ﻻ يوجد ملخص باللغة العربية
The evolution and spectral properties of stars on the AGB are significantly affected by mass loss through dusty stellar winds. Dynamic atmosphere and wind models are an essential tool for studying these evolved stars, both individually and as members of stellar populations, to understand their contribution to the integrated light and chemical evolution of galaxies. This paper is part of a series testing state-of-the-art atmosphere and wind models of carbon stars against observations, and making them available for use in various theoretical and observational studies. We have computed low-resolution spectra and photometry (in the wavelength range 0.35-25 mu) for a grid of 540 dynamic models with stellar parameters typical of solar-metallicity C-rich AGB stars and with a range of pulsation amplitudes. The models cover the dynamic atmosphere and dusty outflow (if present), assuming spherical symmetry, and taking opacities of gas-phase species and dust grains consistently into account. To characterize the time-dependent dynamic and photometric behaviour of the models in a concise way we defined a number of classes for models with and without winds. Comparisons with observed data in general show a quite good agreement for example regarding mass-loss rates vs. (J-K) colours or K magnitudes vs. (J-K) colours. Some exceptions from the good overall agreement, however, are found and attributed to the range of input parameters (e.g. relatively high carbon excesses) or intrinsic model assumptions (e.g. small particle limit for grain opacities). While current results indicate that some changes in model assumptions and parameter ranges should be made in the future to bring certain synthetic observables into better agreement with observations, it seems unlikely that these pending improvements will significantly affect the mass-loss rates of the models.
We present the Stagger-grid, a comprehensive grid of time-dependent, 3D hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended
We present a new grid of non-adiabatic, linear pulsation models of Long-Period Variables (LPVs), including periods and growth rates for radial modes from the fundamental to the fourth overtone. The models span a wide range in mass, luminosity, metall
Carbon-deficient red giants (CDRGs) are a rare class of peculiar red giants, also called weak G-band or weak-CH stars. Their atmospheric compositions show depleted carbon, a low 12C/13C isotopic ratio, and an overabundance of nitrogen, indicating tha
Synthetic photometry is a great tool for studying globular clusters, especially for understanding the nature of their multiple populations. Our goal is to quantify the errors on synthetic photometry that are caused by uncertainties on stellar and obs
We present extensive optical ($UBVRI$, $griz$, and open CCD) and near-infrared ($ZYJH$) photometry for the very nearby Type IIP SN ~2013ej extending from +1 to +461 days after shock breakout, estimated to be MJD $56496.9pm0.3$. Substantial time serie