ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of radiation transfer on the structure of self-gravitating disks, their fragmentation and evolution of the fragments

48   0   0.0 ( 0 )
 نشر من قبل Yusuke Tsukamoto
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate structure of self-gravitating disks, their fragmentation and evolution of the fragments (the clumps) using both analytic approach and three-dimensional radiation hydrodynamics simulations starting from molecular cores. The simulations show that non-local radiative transfer determines disk temperature. We find the disk structure is well described by an analytical model of quasi-steady self-gravitating disk with radial radiative transfer. Because the radiative process is not local and radiation from the interstellar medium cannot be ignored, the local radiative cooling would not be balanced with the viscous heating in a massive disk around a low mass star. In our simulations, there are cases in which the disk does not fragment even though it satisfies the fragmentation criterion based on disk cooling time ($Q sim 1$ and $Omega t_{rm cool}sim 1$). This indicates that at least the criterion is not sufficient condition for fragmentation. We determine the parameter range for the host cloud core in which disk fragmentation occurs. In addition, we show that the temperature evolution of the center of the clump is close to that of typical first cores and the minimum initial mass of clumps to be about a few Jupiter mass.

قيم البحث

اقرأ أيضاً

120 - Ken Rice 2016
It is quite likely that self-gravity will play an important role in the evolution of accretion discs, in particular those around young stars, and those around supermassive black holes. We summarise, here, our current understanding of the evolution of such discs, focussing more on discs in young stellar system, than on discs in active galactic nuclei. We consider the conditions under which such discs may fragment to form bound objects, and when they might, instead, be expected to settle into a quasi-steady, self-regulated state. We also discuss how this understanding may depend on the mass of the disc relative to the mass of the central object, and how it might depend on the presence of external irradiation. Additionally, we consider whether or not fragmentation might be stochastic, where we might expect it to occur in an actual protostellar disc, and if there is any evidence for fragmentation actually playing a role in the formation of planetary-mass bodies. Although there are still a number of outstanding issue, such as the convergence of simulations of self-gravitating discs, whether or not there is more than one mode of fragmentation, and quite what role self-gravitating discs may play in the planet formation process, our general understanding of these systems seems quite robust.
We present new sub-arcsecond (0.7) Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations of the 1.3 mm continuum emission from circumstellar disks around 11 low and intermediate mass pre-main sequence stars. High resolution ob servations for 3 additional sources were obtained from literature. In all cases the disk emission is spatially resolved. We adopt a self consistent accretion disk model based on the similarity solution for the disk surface density and constrain the dust radial density distribution on spatial scales of about 40 AU. Disk surface densities appear to be correlated with the stellar ages where the characteristic disk radius increases from ~ 20 AU to 100 AU over about 5 Myr. This disk expansion is accompanied by a decrease in the mass accretion rate, suggesting that our sample disks form an evolutionary sequence. Interpreting our results in terms of the temporal evolution of a viscous $alpha$-disk, we estimate (i) that at the beginning of the disk evolution about 60% of the circumstellar material was located inside radii of 25--40 AU, (ii) that disks formed with masses from 0.05 to 0.4 M$_{sun}$ and (iii) that the viscous timescale at the disk initial radius is about 0.1-0.3 Myr. Viscous disk models tightly link the surface density $Sigma(R)$ with the radial profile of the disk viscosity $ u(R) propto R^{gamma}$. We find values of $gamma$ ranging from -0.8 to 0.8, suggesting that the viscosity dependence on the orbital radius can be very different in the observed disks. Adopting the $alpha$ parameterization for the viscosity, we argue that $alpha$ must decrease with the orbital radius and that it may vary between 0.5 and $10^{-4}$. (abridged)
Using numerical hydrodynamics simulations we studied the gravitational collapse of pre-stellar cores of sub-solar mass embedded into a low-density external environment. Four models with different magnitude and direction of rotation of the external en vironment with respect to the central core were studied and compared with an isolated model. We found that the infall of matter from the external environment can significantly alter the disk properties as compared to those seen in the isolated model. Depending on the magnitude and direction of rotation of the external environment, a variety of disks can form including compact (<= 200 AU) ones shrinking in size due to infall of external matter with low angular momentum, as well as extended disks forming due to infall of external matter with high angular momentum. The former are usually stable against gravitational fragmentation, while the latter are prone to fragmentation and formation of stellar systems with sub-stellar/very-low-mass companions. In the case of counterrotating external environment, very compact (< 5 AU) and short-lived (<= a few * 10^5 yr) disks can form when infalling material has low angular momentum. The most interesting case is found for the infall of counterrotating external material with high angular momentum, leading to the formation of counterrotating inner and outer disks separated by a deep gap at a few tens AU. The gap migrates inward due to accretion of the inner disk onto the protostar, turns into a central hole, and finally disappears giving way to the outer strongly gravitationally unstable disk. This model may lead to the emergence of a transient stellar system with sub-stellar/very-low-mass components counterrotating with respect to that of the star.
161 - Eduard Vorobyov 2018
The long-term evolution of a circumstellar disk starting from its formation and ending in the T Tauri phase was simulated numerically with the purpose of studying the evolution of dust in the disk with distinct values of viscous alpha-parameter and d ust fragmentation velocity v_frag. We solved numerical hydrodynamics equations in the thin-disk limit, which are modified to include a dust component consisting of two parts: sub-micron-sized dust and grown dust with a maximum radius a_r. The former is strictly coupled to the gas, while the latter interacts with the gas via friction. The conversion of small to grown dust, dust growth, and dust self-gravity are also considered. We found that the process of dust growth known for the older protoplanetary phase also holds for the embedded phase of disk evolution. The dust growth efficiency depends on the radial distance from the star - a_r is largest in the inner disk and gradually declines with radial distance. In the inner disk, a_r is limited by the dust fragmentation barrier. The process of small-to-grown dust conversion is very fast once the disk is formed. The total mass of grown dust in the disk (beyond 1 AU) reaches tens or even hundreds of Earth masses already in the embedded phase of star formation and even a greater amount of grown dust drifts in the inner, unresolved 1 AU of the disk. Dust does not usually grow to radii greater than a few cm. A notable exception are models with alpha <= 10^{-3}, in which case a zone with reduced mass transport develops in the inner disk and dust can grow to meter-sized boulders in the inner 10 AU. Grown dust drifts inward and accumulates in the inner disk regions. This effect is most pronounced in the alpha <= 10^{-3} models where several hundreds of Earth masses can be accumulated in a narrow region of several AU from the star by the end of embedded phase. (abridged).
We present a mechanism for the crystalline silicate production associated with the formation and subsequent destruction of massive fragments in young protostellar disks. The fragments form in the embedded phase of star formation via disk fragmentatio n at radial distances ga 50-100 AU and anneal small amorphous grains in their interior when the gas temperature exceeds the crystallization threshold of ~ 800 K. We demonstrate that fragments that form in the early embedded phase can be destroyed before they either form solid cores or vaporize dust grains, thus releasing the processed crystalline dust into various radial distances from sub-AU to hundred-AU scales. Two possible mechanisms for the destruction of fragments are the tidal disruption and photoevaporation as fragments migrate radially inward and approach the central star and also dispersal by tidal torques exerted by spiral arms. As a result, most of the crystalline dust concentrates to the disk inner regions and spiral arms, which are the likely sites of fragment destruction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا