ترغب بنشر مسار تعليمي؟ اضغط هنا

The early evolution of viscous and self-gravitating circumstellar disks with a dust component

162   0   0.0 ( 0 )
 نشر من قبل Eduard I. Vorobyov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eduard Vorobyov




اسأل ChatGPT حول البحث

The long-term evolution of a circumstellar disk starting from its formation and ending in the T Tauri phase was simulated numerically with the purpose of studying the evolution of dust in the disk with distinct values of viscous alpha-parameter and dust fragmentation velocity v_frag. We solved numerical hydrodynamics equations in the thin-disk limit, which are modified to include a dust component consisting of two parts: sub-micron-sized dust and grown dust with a maximum radius a_r. The former is strictly coupled to the gas, while the latter interacts with the gas via friction. The conversion of small to grown dust, dust growth, and dust self-gravity are also considered. We found that the process of dust growth known for the older protoplanetary phase also holds for the embedded phase of disk evolution. The dust growth efficiency depends on the radial distance from the star - a_r is largest in the inner disk and gradually declines with radial distance. In the inner disk, a_r is limited by the dust fragmentation barrier. The process of small-to-grown dust conversion is very fast once the disk is formed. The total mass of grown dust in the disk (beyond 1 AU) reaches tens or even hundreds of Earth masses already in the embedded phase of star formation and even a greater amount of grown dust drifts in the inner, unresolved 1 AU of the disk. Dust does not usually grow to radii greater than a few cm. A notable exception are models with alpha <= 10^{-3}, in which case a zone with reduced mass transport develops in the inner disk and dust can grow to meter-sized boulders in the inner 10 AU. Grown dust drifts inward and accumulates in the inner disk regions. This effect is most pronounced in the alpha <= 10^{-3} models where several hundreds of Earth masses can be accumulated in a narrow region of several AU from the star by the end of embedded phase. (abridged).



قيم البحث

اقرأ أيضاً

103 - M. Tazzari , L. Testi , A. Natta 2017
The formation of planets strongly depends on the total amount as well as on the spatial distribution of solids in protoplanetary disks. Thanks to the improvements in resolution and sensitivity provided by ALMA, measurements of the surface density of mm-sized grains are now possible on large samples of disks. Such measurements provide statistical constraints that can be used to inform our understanding of the initial conditions of planet formation. We analyze spatially resolved observations of 36 protoplanetary disks in the Lupus star forming complex from our ALMA survey at 890 micron, aiming to determine physical properties such as the dust surface density, the disk mass and size and to provide a constraint on the temperature profile. We fit the observations directly in the uv-plane using a two-layer disk model that computes the 890 micron emission by solving the energy balance at each disk radius. For 22 out of 36 protoplanetary disks we derive robust estimates of their physical properties. The sample covers stellar masses between ~0.1 and ~2 Solar masses, and we find no trend between the average disk temperatures and the stellar parameters. We find, instead, a correlation between the integrated sub-mm flux (a proxy for the disk mass) and the exponential cut-off radii (a proxy of the disk size) of the Lupus disks. Comparing these results with observations at similar angular resolution of Taurus-Auriga/Ophiuchus disks found in literature and scaling them to the same distance, we observe that the Lupus disks are generally fainter and larger at a high level of statistical significance. Considering the 1-2 Myr age difference between these regions, it is possible to tentatively explain the offset in the disk mass/disk size relation with viscous spreading, however with the current measurements other mechanisms cannot be ruled out.
Aims: We explore the long-term evolution of young protoplanetary disks with different approaches to computing the thermal structure determined by various cooling and heating processes in the disk and its surroundings. Methods: Numerical hydrodynamics simulations in the thin-disk limit were complemented with three thermal evolution schemes: a simplified $beta$-cooling approach with and without irradiation, in which the rate of disk cooling is proportional to the local dynamical time, a fiducial model with equal dust and gas temperatures calculated taking viscous heating, irradiation, and radiative cooling into account, and also a more sophisticated approach allowing decoupled dust and gas temperatures. Results: We found that the gas temperature may significantly exceed that of dust in the outer regions of young disks thanks to additional compressional heating caused by the infalling envelope material in the early stages of disk evolution and slow collisional exchange of energy between gas and dust in low-density disk regions. The outer envelope however shows an inverse trend with the gas temperatures dropping below that of dust. The global disk evolution is only weakly sensitive to temperature decoupling. Nevertheless, separate dust and gas temperatures may affect the chemical composition, dust evolution, and disk mass estimates. Constant-$beta$ models without stellar and background irradiation fail to reproduce the disk evolution with more sophisticated thermal schemes because of intrinsically variable nature of the $beta$-parameter. Constant-$beta$ models with irradiation can better match the dynamical and thermal evolution, but the agreement is still incomplete. Conclusions: Models allowing separate dust and gas temperatures are needed when emphasis is placed on the chemical or dust evolution in protoplanetary disks, particularly in sub-solar metallicity environments.
70 - Ken Rice 2017
It has recently been suggested that in the presence of driven turbulence discs may be much less stable against gravitational collapse than their non turbulent analogs, due to stochastic density fluctuations in turbulent flows. This mode of fragmentat ion would be especially important for gas giant planet formation. Here we argue, however, that stochastic density fluctuations due to turbulence do not enhance gravitational instability and disc fragmentation in the long cooling time limit appropriate for planet forming discs. These fluctuations evolve adiabatically and dissipate away by decompression faster than they could collapse. We investigate these issues numerically in 2D via shearing box simulations with driven turbulence and also in 3D with a model of instantaneously applied turbulent velocity kicks. In the former setting turbulent driving leads to additional disc heating that tends to make discs more, rather than less, stable to gravitational instability. In the latter setting, the formation of high density regions due to convergent velocity kicks is found to be quickly followed by decompression, as expected. We therefore conclude that driven turbulence does not promote disc fragmentation in protoplanetary discs and instead tends to make the discs more stable. We also argue that sustaining supersonic turbulence is very difficult in discs that cool slowly.
We present the implementation of a dust growth and fragmentation module in the public Smoothed Particle Hydrodynamics (SPH) code PHANTOM. This module is made available for public use with this paper. The coagulation model considers locally monodisper se dust size distributions around single values that are carried by the SPH particles. Along with the presentation of the model, implementation and tests, we showcase growth and fragmentation in a few typical circumstellar disc simulations and revisit previous results. The module is also interfaced with the radiative transfer code MCFOST, which facilitates the comparison between simulations and ALMA observations by generating synthetic maps. Circumstellar disc simulations with growth and fragmentation reproduce the `self-induced dust trap mechanism first proposed by Gonzalez et al., which supports its existence. Synthetic images of discs featuring this mechanism suggest it would be detectable by ALMA as a bright axisymmetric ring at several tens of au from the star. With this paper, our aim is to provide a public tool to be able to study and explore dust growth in a variety of applications related to planet formation.
75 - Hans Baehr , Zhaohuan Zhu 2021
Observations suggest that protoplanetary disks have moderate accretion rates onto the central young star, especially at early stages (e.g. HL Tau), indicating moderate disk turbulence. However, recent ALMA observations suggest that dust is highly set tled, implying weak turbulence. Motivated by such tension, we carry out 3D stratified local simulations of self-gravitating disks, focusing on settling of dust particles in actively accreting disks. We find that gravitationally unstable disks can have moderately high accretion rates while maintaining a relatively thin dust disk for two reasons. First, accretion stress from the self-gravitating spirals (self-gravity stress) can be stronger than the stress from turbulence (Reynolds stress) by a factor of 5-20. Second, the strong gravity from the gas to the dust decreases the dust scale height by another factor of $sim 2$. Furthermore, the turbulence is slightly anisotropic, producing a larger Reynolds stress than the vertical dust diffusion coefficient. Thus, gravitoturbulent disks have unusually high vertical Schmidt numbers ($Sc_z$) if we scale the total accretion stress with the vertical diffusion coefficient (e.g. $Sc_zsim$ 10-100). The reduction of the dust scale height by the gas gravity, should also operate in gravitationally stable disks ($Q>$1). Gravitational forces between particles become more relevant for the concentration of intermediate dust sizes, forming dense clouds of dust. After comparing with HL Tau observations, our results suggest that self-gravity and gravity among different disk components could be crucial for solving the conflict between the protoplanetary disk accretion and dust settling, at least at the early stages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا