ترغب بنشر مسار تعليمي؟ اضغط هنا

An exotic zoo of diffeomorphism groups on $mathbb R^n$

365   0   0.0 ( 0 )
 نشر من قبل Peter W. Michor
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $C^{[M]}$ be a (local) Denjoy-Carleman class of Beurling or Roumieu type, where the weight sequence $M=(M_k)$ is log-convex and has moderate growth. We prove that the groups ${operatorname{Diff}}mathcal{B}^{[M]}(mathbb{R}^n)$, ${operatorname{Diff}}W^{[M],p}(mathbb{R}^n)$, ${operatorname{Diff}}{mathcal{S}}{}_{[L]}^{[M]}(mathbb{R}^n)$, and ${operatorname{Diff}}mathcal{D}^{[M]}(mathbb{R}^n)$ of $C^{[M]}$-diffeomorphisms on $mathbb{R}^n$ which differ from the identity by a mapping in $mathcal{B}^{[M]}$ (global Denjoy--Carleman), $W^{[M],p}$ (Sobolev-Denjoy-Carleman), ${mathcal{S}}{}_{[L]}^{[M]}$ (Gelfand--Shilov), or $mathcal{D}^{[M]}$ (Denjoy-Carleman with compact support) are $C^{[M]}$-regular Lie groups. As an application we use the $R$-transform to show that the Hunter-Saxton PDE on the real line is well-posed in any of the classes $W^{[M],1}$, ${mathcal{S}}{}_{[L]}^{[M]}$, and $mathcal{D}^{[M]}$. Here we find some surprising groups with continuous left translations and $C^{[M]}$ right translations (called half-Lie groups), which, however, also admit $R$-transforms.



قيم البحث

اقرأ أيضاً

Let $X$ be a compact orientable non-Haken 3-manifold modeled on the Thurston geometry $text{Nil}$. We show that the diffeomorphism group $text{Diff}(X)$ deformation retracts to the isometry group $text{Isom}(X)$. Combining this with earlier work by m any authors, this completes the determination the homotopy type of $text{Diff}(X)$ for any compact, orientable, prime 3-manifold $X$.
We complete the proof of the Generalized Smale Conjecture, apart from the case of $RP^3$, and give a new proof of Gabais theorem for hyperbolic 3-manifolds. We use an approach based on Ricci flow through singularities, which applies uniformly to sphe rical space forms other than $S^3$ and $RP^3$ and hyperbolic manifolds, to prove that the moduli space of metrics of constant sectional curvature is contractible. As a corollary, for such a 3-manifold $X$, the inclusion $text{Isom} (X,g)to text{Diff}(X)$ is a homotopy equivalence for any Riemannian metric $g$ of constant sectional curvature.
232 - Jiuzhou Huang , Jiawei Liu 2021
In this paper, we establish the existence and uniqueness of Ricci flow that admits an embedded closed convex surface in $mathbb{R}^3$ as metric initial condition. The main point is a family of smooth Ricci flows starting from smooth convex surfaces w hose metrics converge uniformly to the metric of the initial surface in intrinsic sense.
165 - Ciqiang Zhuo , Dachun Yang 2018
Let $p(cdot): mathbb R^nto(0,1]$ be a variable exponent function satisfying the globally log-Holder continuous condition and $L$ a one to one operator of type $omega$ in $L^2({mathbb R}^n)$, with $omegain[0,,pi/2)$, which has a bounded holomorphic fu nctional calculus and satisfies the Davies-Gaffney estimates. In this article, the authors introduce the variable weak Hardy space $W!H_L^{p(cdot)}(mathbb R^n)$ associated with $L$ via the corresponding square function. Its molecular characterization is then established by means of the atomic decomposition of the variable weak tent space $W!T^{p(cdot)}(mathbb R^n)$ which is also obtained in this article. In particular, when $L$ is non-negative and self-adjoint, the authors obtain the atomic characterization of $W!H_L^{p(cdot)}(mathbb R^n)$. As an application of the molecular characterization, when $L$ is the second-order divergence form elliptic operator with complex bounded measurable coefficient, the authors prove that the associated Riesz transform $ abla L^{-1/2}$ is bounded from $W!H_L^{p(cdot)}(mathbb R^n)$ to the variable weak Hardy space $W!H^{p(cdot)}(mathbb R^n)$. Moreover, when $L$ is non-negative and self-adjoint with the kernels of ${e^{-tL}}_{t>0}$ satisfying the Gauss upper bound estimates, the atomic characterization of $W!H_L^{p(cdot)}(mathbb R^n)$ is further used to characterize the space via non-tangential maximal functions.
195 - Weiyong He , Jun Li 2018
The scalar curvature equation for rotation invariant Kahler metrics on $mathbb{C}^n backslash {0}$ is reduced to a system of ODEs of order 2. By solving the ODEs, we obtain complete lists of rotation invariant zero or positive csck on $mathbb{C}^n ba ckslash {0}$ in lower dimensions. We also prove that there does not exist negative csck on $mathbb{C}^n backslash {0}$ for $n=2,3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا