ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-ranged magnetic proximity effects in noble metal-doped cobalt probed with spin- dependent tunnelling

199   0   0.0 ( 0 )
 نشر من قبل Herve Courtois
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We inserted non-magnetic layers of Au and Cu into sputtered AlOx-based magnetic tunnel junctions and Meservey-Tedrow junctions in order to study their effect on tunnelling magnetoresistance (TMR) and spin polarization (TSP). When either Au or Cu are inserted into a Co/AlOx interface, we find that TMR and TSP remain finite and measurable for thicknesses up to several nanometres. High-resolution transmission electron microscopy shows that the Cu and Au interface layers are fully continuous when their thickness exceeds ~3 nm, implying that spin-polarized carriers penetrate the interface noble metal to dis- tances exceeding this value. A power law model based on exchange scattering is found to fit the data better than a phenomenological exponential decay. The discrepancy between these length scales and the much shorter ones reported from x-ray magnetic circular dichroism studies of magnetic proximitization is ascribed to the fact that our tunnelling transport measurements selectively probe s-like electrons close to the Fermi level. When a 0.1 nm thick Cu or Au layer is inserted within the Co, we find that the suppression of TMR and TSP is restored on a length scale of <=1 nm, indicating that this is a sufficient quantity of Co to form a fully spin-polarized band structure at the interface with the tunnel barrier.



قيم البحث

اقرأ أيضاً

197 - D. Vu , H.F. Jurca , F. Maroun 2010
The spin dependence of the photoelectron tunnel current from free standing GaAs films into out-of- plane magnetized Cobalt films is demonstrated. The measured spin asymmetry (A) resulting from a change in light helicity, reaches +/- 6% around zero ap plied tunnel bias and drops to +/- 2% at a bias of -1.6 V applied to the GaAs. This decrease is a result of the drop in the photoelectron spin polarization that results from a reduction in the GaAs surface recombination velocity. The sign of A changes with that of the Cobalt magnetization direction. In contrast, on a (nonmagnetic) Gold film A ~ 0%.
We review the present status of the experimental and theoretical research on the proximity effect in heterostructures composed of superconducting (S) and ferromagnetic (F) thin films. First, we discuss traditional effects originating from the oscilla tory behavior of the superconducting pair wave function in the F-layer. Then, we concentrate on recent theoretical predictions for S/F layer systems. These are a) generation of odd triplet superconductivity in the F-layer and b) ferromagnetism induced in the S-layer below the superconducting transition temperature $T_{c}$ (inverse proximity effect). The second part of the review is devoted to discussion of experiments relevant to the theoretical predictions of the first part. In particular, we present results of measurements of the critical temperature $T_{c}$ as a function of the thickness of F-layers and we review experiments indicating existence of odd triplet superconductivity, cryptoferromagnetism and inverse proximity effect.
594 - F. S. Bergeret , I. Tokatly 2012
The long-range proximity effect in superconductor/ferromagnet (S/F) hybrid nano-structures is observed if singlet Cooper pairs from the superconductor are converted into triplet pairs which can diffuse into the fer- romagnet over large distances. It is commonly believed that this happens only in the presence of magnetic inhomogeneities. We show that there are other sources of the long-range triplet component (LRTC) of the con- densate and establish general conditions for their occurrence. As a prototypical example we consider first a system where the exchange field and spin-orbit coupling can be treated as time and space components of an effective SU(2) potential. We derive a SU(2) covariant diffusive equation for the condensate and demonstrate that an effective SU(2) electric field is responsible for the long-range proximity effect. Finally, we extend our analysis to a generic ferromagnet and establish a universal condition for the LRTC. Our results open a new avenue in the search for such correlations in S/F structures and make a hitherto unknown connection between the LRTC and Yang-Mills electrostatics.
Heterostructures consisting of a cuprate superconductor YBa2Cu3O7x and a ruthenate/manganite (SrRuO3/La0.7Sr0.3MnO3) spin valve have been studied by SQUID magnetometry, ferromagnetic resonances and neutron reflectometry. It was shown that due to the influence of magnetic proximity effect a magnetic moment is induced in the superconducting part of heterostructure and at the same time the magnetic moment is suppressed in the ferromagnetic spin valve. The experimental value of magnetization induced in the superconductor has the same order of magnitude with the calculations based on the induced magnetic moment of Cu atoms due to orbital reconstruction at the superconductor-ferromagnetic interface. It corresponds also to the model that takes into account the change in the density of states at a distance of order of the coherence length in the superconductor. The experimentally obtained characteristic length of penetration of the magnetic moment into superconductor exceeds the coherence length for cuprate superconductor. This fact points on the dominance of the mechanism of the induced magnetic moment of Cu atoms due to orbital reconstruction.
We study the physical properties of a ballistic heterostructure made of a ferromagnet (FM) and a spin-triplet superconductor (TSC) with a layered structure stacking along the direction perpendicular to the planes where a chiral px+ipy pairing occurs and assuming spin dependent processes at the interface. We use a self-consistent Bogoliubov-de Gennes approach on a three-dimensional lattice to obtain the spatial profiles of the pairing amplitude and the magnetization. We find that, depending on the strength of the ferromagnetic exchange field, the ground state of the system can have two distinct configurations with a parallel or anti-parallel collinearity between the magnetic moments in the bulk and at the interface. We demonstrate that a magnetic state having non coplanar interface, bulk and Cooper pairs spins may be stabilized if the bulk magnetization is assumed to be fixed along a given direction. The study of the density of states reveals that the modification of the electronic spectrum in the FM plays an important role in the setting of the optimal magnetic configuration. Finally, we find the existence of induced spin-polarized pair correlations in the FM-TSC system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا