ﻻ يوجد ملخص باللغة العربية
We present the results of 45 transit observations obtained for the transiting exoplanet HAT-P-32b. The transits have been observed using several telescopes mainly throughout the YETI network. In 25 cases, complete transit light curves with a timing precision better than $1.4:$min have been obtained. These light curves have been used to refine the system properties, namely inclination $i$, planet-to-star radius ratio $R_textrm{p}/R_textrm{s}$, and the ratio between the semimajor axis and the stellar radius $a/R_textrm{s}$. First analyses by Hartman et al. (2011) suggest the existence of a second planet in the system, thus we tried to find an additional body using the transit timing variation (TTV) technique. Taking also literature data points into account, we can explain all mid-transit times by refining the linear ephemeris by 21ms. Thus we can exclude TTV amplitudes of more than $sim1.5$min.
In this Letter we present observations of recent HAT-P-13b transits. The combined analysis of published and newly obtained transit epochs shows evidence for significant transit timing variations since the last publicly available ephemerides. Variatio
We present seven light curves of the exoplanet system HAT-P-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. The light curves are analysed using a Markov-Chain Monte-Carlo algorithm to update the para
From its discovery, the low density transiting Neptune HAT-P-26b showed a 2.1-sigma detection drift in its spectroscopic data, while photometric data showed a weak curvature in the timing residuals that required further follow-up observations to be c
Considering the importance of investigating the transit timing variations (TTVs) of transiting exoplanets, we present a follow-up study of HAT-P-12b. We include six new light curves observed between 2011 and 2015 from three different observatories, i
We present eight new light curves of the transiting extra-solar planet HAT-P-25b obtained from 2013 to 2016 with three telescopes at two observatories. We use the new light curves, along with recent literature material, to estimate the physical and o