ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical instability of a Bose-Einstein condensate with higher-order interactions in an optical potential through a variational approach

98   0   0.0 ( 0 )
 نشر من قبل Subramaniyan Sabari
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the dynamical instability of Bose-Einstein condensates (BECs) with higher-order interactions immersed in an optical lattice with weak driving harmonic potential. For this, we compute both analytically and numerically a modified Gross-Pitaevskii equation with higher-order nonlinearity and external potentials generated by magnetic and optical fields. Using the time-dependent variational approach, we derive the ordinary differential equations for the time evolution of the amplitude and phase of modulational perturbation. Through an effective potential, we obtain the modulational instability condition of BECs and discuss the effect of the higher-order interaction in the dynamics of the condensates in presence of optical potential. We perform direct numerical simulations to support our analytical results, and good agreement is found.

قيم البحث

اقرأ أيضاً

The stability of dark solitons generated by a supersonic flow of a Bose-Einstein condensate past a concave corner (or a wedge) is studied. It is shown that solitons in the dispersive shock wave generated at the initial moment of time demonstrate a sn ake instability during their evolution to stationary curved solitons. Time of decay of soliton to vortices agrees very well with analytical estimates of the instability growth rate.
We consider a cubic Gross-Pitaevskii (GP) equation governing the dynamics of Bose-Einstein condensates (BECs) with time-dependent coefficients in front of the cubic term and inverted parabolic potential. Under a special condition imposed on the coeff icients, a combination of phase-imprint and modified lens-type transformations converts the GP equation into the integrable Kundu-Eckhaus (KE) equation with constant coefficients, which contains the quintic nonlinearity and the Raman-like term producing the self-frequency shift. The condition for the baseband modulational instability of CW states is derived, providing the possibility of generation of chirped rogue waves (RWs) in the underlying BEC model. Using known RW solutions of the KE equation, we present explicit first- and second-order chirped RW states. The chirp of the first- and second-order RWs is independent of the phase imprint. Detailed solutions are presented for the following configurations: (i) the nonlinearity exponentially varying in time; (ii) time-periodic modulation of the nonlinearity; (iii) a stepwise time modulation of the strength of the expulsive potential. Singularities of the local chirp coincide with valleys of the corresponding RWs. The results demonstrate that the temporal modulation of the s-wave scattering length and strength of the inverted parabolic potential can be used to manipulate the evolution of rogue matter waves in BEC.
169 - G. Konya , G. Szirmai , P. Domokos 2014
We present a general theory for calculating the damping rate of elementary density wave excitations in a Bose-Einstein condensate strongly coupled to a single radiation field mode of an optical cavity. Thereby we give a detailed derivation of the hug e resonant enhancement in the Beliaev damping of a density wave mode, predicted recently by Konya et al., Phys.~Rev.~A 89, 051601(R) (2014). The given density-wave mode constitutes the polariton-like soft mode of the self-organization phase transition. The resonant enhancement takes place, both in the normal and ordered phases, outside the critical region. We show that the large damping rate is accompanied by a significant frequency shift of this polariton mode. Going beyond the Born-Markov approximation and determining the poles of the retarded Greens function of the polariton, we reveal a strong coupling between the polariton and a collective mode in the phonon bath formed by the other density wave modes.
113 - Yu-Qin Yao , Ji Li , Wei Han 2016
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomi c-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number $n$, and the numbers of the density packets for each quantum state depend on both the principal quantum number $n$ and the secondary quantum number $l$. When the coupling is not zero,the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number $n$, only depend on the secondary quantum number $l$. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number $n$, while the stability of the rational solutions depends on the chemical potential and Raman detuning.
We study quasiparticle scattering effects on the dynamics of a homogeneous Bose-Einstein condensate of ultracold atoms coupled to a single mode of an optical cavity. The relevant excitations, which are polariton-like mixed excitations of photonic and atomic density-wave modes, are identified. All the first-order correlation functions are presented by means of the Keldysh Greens function technique. Beyond confirming the existence of the resonant enhancement of Beliaev damping, we find a very structured spectrum of fluctuations. There is a spectral hole burning at half of the recoil frequency reflecting the singularity of the Beliaev scattering process. The effects of the photon-loss dissipation channel and that of the Beliaev damping due to atom-atom collisions can be well separated. We show that the Beliaev process does not influence the properties of the self-organization criticality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا