ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonequilibrium polariton dynamics in a Bose-Einstein condensate coupled to an optical cavity

165   0   0.0 ( 0 )
 نشر من قبل Gergely Szirmai
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study quasiparticle scattering effects on the dynamics of a homogeneous Bose-Einstein condensate of ultracold atoms coupled to a single mode of an optical cavity. The relevant excitations, which are polariton-like mixed excitations of photonic and atomic density-wave modes, are identified. All the first-order correlation functions are presented by means of the Keldysh Greens function technique. Beyond confirming the existence of the resonant enhancement of Beliaev damping, we find a very structured spectrum of fluctuations. There is a spectral hole burning at half of the recoil frequency reflecting the singularity of the Beliaev scattering process. The effects of the photon-loss dissipation channel and that of the Beliaev damping due to atom-atom collisions can be well separated. We show that the Beliaev process does not influence the properties of the self-organization criticality.

قيم البحث

اقرأ أيضاً

166 - G. Konya , G. Szirmai , P. Domokos 2014
We present a general theory for calculating the damping rate of elementary density wave excitations in a Bose-Einstein condensate strongly coupled to a single radiation field mode of an optical cavity. Thereby we give a detailed derivation of the hug e resonant enhancement in the Beliaev damping of a density wave mode, predicted recently by Konya et al., Phys.~Rev.~A 89, 051601(R) (2014). The given density-wave mode constitutes the polariton-like soft mode of the self-organization phase transition. The resonant enhancement takes place, both in the normal and ordered phases, outside the critical region. We show that the large damping rate is accompanied by a significant frequency shift of this polariton mode. Going beyond the Born-Markov approximation and determining the poles of the retarded Greens function of the polariton, we reveal a strong coupling between the polariton and a collective mode in the phonon bath formed by the other density wave modes.
108 - G. Szirmai , D. Nagy , P. Domokos 2010
A Bose-Einstein condensate of ultracold atoms inside the field of a laser-driven optical cavity exhibits dispersive optical bistability. We describe this system by using mean-field approximation and by analyzing the correlation functions of the linea rized quantum fluctuations around the mean-field solution. The entanglement and the statistics of the atom-field quadratures are given in the stationary state. It is shown that the mean-field solution, i.e. the Bose-Einstein condensate is robust against entanglement generation for most part of the phase diagram.
169 - D. Nagy , G. Konya , G. Szirmai 2009
We show that the motion of a laser-driven Bose-Einstein condensate in a high-finesse optical cavity realizes the spin-boson Dicke-model. The quantum phase transition of the Dicke-model from the normal to the superradiant phase corresponds to the self -organization of atoms from the homogeneous into a periodically patterned distribution above a critical driving strength. The fragility of the ground state due to photon measurement induced back action is calculated.
118 - D. Nagy , G. Szirmai , P. Domokos 2013
The dispersive interaction of a Bose-Einstein condensate with a single mode of a high-finesse optical cavity realizes the radiation pressure coupling Hamiltonian. In this system the role of the mechanical oscillator is played by a single condensate e xcitation mode that is selected by the cavity mode function. We study the effect of atomic s-wave collisions and show that it merely renormalizes parameters of the usual optomechanical interaction. Moreover, we show that even in the case of strong harmonic confinement---which invalidates the use of Bloch states---a single excitation mode of the Bose-Einstein condensate couples significantly to the light field, that is the simplified picture of a single mechanical oscillator mode remains valid.
We propose a novel type of composite light-matter magnetometer based on a transversely driven multi-component Bose-Einstein condensate coupled to two distinct electromagnetic modes of a linear cavity. Above the critical pump strength, the change of t he population imbalance of the condensate caused by an external magnetic field entails the change of relative photon number of the two cavity modes. Monitoring the cavity output fields thus allows for nondestructive measurement of the magnetic field in real time. We show that the sensitivity of the proposed magnetometer exhibits Heisenberg-like scaling with respect to the atom number. For state-of-the-art experimental parameters, we calculate the lower bound on the sensitivity of such a magnetometer to be of the order of fT/$sqrt{mathrm{Hz}}$--pT/$sqrt{mathrm{Hz}}$ for a condensate of $10^4$ atoms with coherence times of the order of several ms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا