ﻻ يوجد ملخص باللغة العربية
We study a class of partial differential equations (PDEs) in the family of the so-called Euler-Poincare differential systems, with the aim of developing a foundation for numerical algorithms of their solutions. This requires particular attention to the mathematical properties of this system when the associated class of elliptic operators possesses non-smooth kernels. By casting the system in its Lagrangian (or characteristics) form, we first formulate a particles system algorithm in free space with homogeneous Dirichlet boundary conditions for the evolving fields. We next examine the deformation of the system when non-homogeneous constant stream boundary conditions are assumed. We show how this simple change at the boundary deeply affects the nature of the evolution, from hyperbolic-like to dispersive with a non-trivial dispersion relation, and examine the potentially regularizing properties of singular kernels offered by this deformation. From the particle algorithm viewpoint, kernel singularities affect the existence and uniqueness of solutions to the corresponding ordinary differential equations systems. We illustrate this with the case when the operator kernel assumes a conical shape over the spatial variables, and examine in detail two-particle dynamics under the resulting lack of Lipschitz-continuity. Curiously, we find that for the conically-shaped kernels the motion of the related two-dimensional waves can become completely integrable under appropriate initial data. This reduction projects the two-dimensional system to the one-dimensional completely integrable Shallow-Water equation [Camassa, R. and Holm, D. D., Phys. Rev. Lett., 71, 1961-1964, 1993], while retaining the full dependence on two spatial dimensions for the single channel solutions.
The Euler-Poincare (EP) equations describe the geodesic motion on the diffeomorphism group. For template matching (template deformation), the Euler-Lagrangian equation, arising from minimizing an energy function, falls into the Euler-Poincare theory
This paper is concerned with the study, by computational means, of the generation and stability of solitary-wave solutions of generaliz
We numerically study solitary waves in the coupled nonlinear Schrodinger equations. We detect pitchfork bifurcations of the fundamental solitary wave and compute eigenvalues and eigenfunctions of the corresponding eigenvalue problems to determine the
The Green Nagdhi equations are frequently used as a model of the wave-like behaviour of the free surface of a fluid, or the interface between two homogeneous fluids of differing densities. Here we show that their multilayer extension arises naturally
In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The basis is the equivalence via the Smith factorization with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Ro