ترغب بنشر مسار تعليمي؟ اضغط هنا

An Euler Poincare framework for the multilayer Green Nagdhi equations

176   0   0.0 ( 0 )
 نشر من قبل James Percival
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Green Nagdhi equations are frequently used as a model of the wave-like behaviour of the free surface of a fluid, or the interface between two homogeneous fluids of differing densities. Here we show that their multilayer extension arises naturally from a framework based on the Euler Poincare theory under an ansatz of columnar motion. The framework also extends to the travelling wave solutions of the equations. We present numerical solutions of the travelling wave problem in a number of flow regimes. We find that the free surface and multilayer waves can exhibit intriguing differences compared to the results of single layer or rigid lid models.



قيم البحث

اقرأ أيضاً

We review the continuous symmetry approach and apply it to find the solution, via the construction of constants of motion and infinitesimal symmetries, of the 3D Euler fluid equations in several instances of interest, without recourse to Noethers the orem. We show that the vorticity field is a symmetry of the flow and therefore one can construct a Lie algebra of symmetries if the flow admits another symmetry. For steady Euler flows this leads directly to the distinction of (non-)Beltrami flows: an example is given where the topology of the spatial manifold determines whether the flow admits extra symmetries. Next, we study the stagnation-point-type exact solution of the 3D Euler fluid equations introduced by Gibbon et al. (Physica D, vol.132, 1999, pp.497-510) along with a one-parameter generalisation of it introduced by Mulungye et al. (J. Fluid Mech., vol.771, 2015, pp.468-502). Applying the symmetry approach to these models allows for the explicit integration of the fields along pathlines, revealing a fine structure of blowup for the vorticity, its stretching rate, and the back-to-labels map, depending on the value of the free parameter and on the initial conditions. Finally, we produce explicit blowup exponents and prefactors for a generic type of initial conditions.
We address the question whether a singularity in a three-dimensional incompressible inviscid fluid flow can occur in finite time. Analytical considerations and numerical simulations suggest high-symmetry flows being a promising candidate for a finite -time blowup. Utilizing Lagrangian and geometric non-blowup criteria, we present numerical evidence against the formation of a finite-time singularity for the high-symmetry vortex dodecapole initial condition. We use data obtained from high resolution adaptively refined numerical simulations and inject Lagrangian tracer particles to monitor geometric properties of vortex line segments. We then verify the assumptions made by analytical non-blowup criteria introduced by Deng et. al [Commun. PDE 31 (2006)] connecting vortex line geometry (curvature, spreading) to velocity increase to rule out singular behavior.
Incompressible 3D Euler equations develop high vorticity in very thin pancake-like regions from generic large-scale initial conditions. In this work we propose an exact solution of the Euler equations for the asymptotic pancake evolution. This soluti on combines a shear flow aligned with an asymmetric straining flow, and is characterized by a single asymmetry parameter and an arbitrary transversal vorticity profile. The analysis is based on detailed comparison with numerical simulations performed using a pseudo-spectral method in anisotropic grids of up to 972 x 2048 x 4096.
In fluid mechanics, a lot of authors have been reporting analytical solutions of Euler and Navier-Stokes equations. But there is an essential deficiency of non-stationary solutions indeed. In our presentation, we explore the case of non-stationary fl ows of the Euler equations for incompressible fluids, which should conserve the Bernoulli-function to be invariant for the aforementioned system. We use previously suggested ansatz for solving of the system of Navier-Stokes equations (which is proved to have the analytical way to present its solution in case of conserving the Bernoulli-function to be invariant for such the type of the flows). Conditions for the existence of exact solution of the aforementioned type for the Euler equations are obtained. The restrictions at choosing of the form of the 3D nonstationary solution for the given constant Bernoulli-function B are considered. We should especially note that pressure field should be calculated from the given constant Bernoulli-function B, if all the components of velocity field are obtained.
The interplay between incompressibility and stratification can lead to non-conservation of horizontal momentum in the dynamics of a stably stratified incompressible Euler fluid filling an infinite horizontal channel between rigid upper and lower plat es. Lack of conservation occurs even though in this configuration only vertical external forces act on the system. This apparent paradox was seemingly first noticed by Benjamin (J. Fluid Mech., vol. 165, 1986, pp. 445-474) in his classification of the invariants by symmetry groups with the Hamiltonian structure of the Euler equations in two dimensional settings, but it appears to have been largely ignored since. By working directly with the motion equations, the paradox is shown here to be a consequence of the rigid lid constraint coupling through incompressibility with the infinite inertia of the far ends of the channel, assumed to be at rest in hydrostatic equilibrium. Accordingly, when inertia is removed by eliminating the stratification, or, remarkably, by using the Boussinesq approximation of uniform density for the inertia terms, horizontal momentum conservation is recovered. This interplay between constraints,action at a distance by incompressibility, and inertia is illustrated by layer-averaged exact results, two-layer long-wave models, and direct numerical simulations of the incompressible Euler equations with smooth stratification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا