ﻻ يوجد ملخص باللغة العربية
In 2008, Haglund, Morse and Zabrocki formulated a Compositional form of the Shuffle Conjecture of Haglund et al. In very recent work, Gorsky and Negut by combining their discoveries with the work of Schiffmann-Vasserot on the symmetric function side and the work of Hikita and Gorsky-Mazin on the combinatorial side, were led to formulate an infinite family of conjectures that extend the original Shuffle Conjecture of Haglund et al. In fact, they formulated one conjecture for each pair (m,n) of coprime integers. This work of Gorsky-Negut leads naturally to the question as to where the Compositional Shuffle Conjecture of Haglund-Morse-Zabrocki fits into these recent developments. Our discovery here is that there is a compositional extension of the Gorsky-Negut Shuffle Conjecture for each pair (km,kn), with (m,n) co-prime and k > 1.
Consider a permutation p to be any finite list of distinct positive integers. A statistic is a function St whose domain is all permutations. Let S(p,q) be the set of shuffles of two disjoint permutations p and q. We say that St is shuffle compatible
Define a permutation to be any sequence of distinct positive integers. Given two permutations p and s on disjoint underlying sets, we denote by p sh s the set of shuffles of p and s (the set of all permutations obtained by interleaving the two permut
In a 2016 ArXiv posting F. Bergeron listed a variety of symmetric functions $G[X;q]$ with the property that $G[X;1+q]$ is $e$-positive. A large subvariety of his examples could be explained by the conjecture that the Dyck path LLT polynomials exhibit
The Stern poset $mathcal{S}$ is a graded infinite poset naturally associated to Sterns triangle, which was defined by Stanley analogously to Pascals triangle. Let $P_n$ denote the interval of $mathcal{S}$ from the unique element of row $0$ of Sterns
In 1989 Kalai stated the three conjectures A, B, C of increasing strength concerning face numbers of centrally symmetric convex polytopes. The weakest conjecture, A, became known as the ``$3^d$-conjecture. It is well-known that the three conjectures