ترغب بنشر مسار تعليمي؟ اضغط هنا

Stanleys conjectures on the Stern poset

127   0   0.0 ( 0 )
 نشر من قبل Arthur Yang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Arthur L.B. Yang




اسأل ChatGPT حول البحث

The Stern poset $mathcal{S}$ is a graded infinite poset naturally associated to Sterns triangle, which was defined by Stanley analogously to Pascals triangle. Let $P_n$ denote the interval of $mathcal{S}$ from the unique element of row $0$ of Sterns triangle to the $n$-th element of row $r$ for sufficiently large $r$. For $ngeq 1$ let begin{align*} L_n(q)&=2cdotleft(sum_{k=1}^{2^n-1}A_{P_k}(q)right)+A_{P_{2^n}}(q), end{align*} where $A_{P}(q)$ represents the corresponding $P$-Eulerian polynomial. For any $ngeq 1$ Stanley conjectured that $L_n(q)$ has only real zeros and $L_{4n+1}(q)$ is divisible by $L_{2n}(q)$. In this paper we obtain a simple recurrence relation satisfied by $L_n(q)$ and affirmatively solve Stanleys conjectures. We also establish the asymptotic normality of the coefficients of $L_n(q)$.



قيم البحث

اقرأ أيضاً

132 - John Lenz , Dhruv Mubayi 2012
Chung and Graham began the systematic study of k-uniform hypergraph quasirandom properties soon after the foundational results of Thomason and Chung-Graham-Wilson on quasirandom graphs. One feature that became apparent in the early work on k-uniform hypergraph quasirandomness is that properties that are equivalent for graphs are not equivalent for hypergraphs, and thus hypergraphs enjoy a variety of inequivalent quasirandom properties. In the past two decades, there has been an intensive study of these disparate notions of quasirandomness for hypergraphs, and an open problem that has emerged is to determine the relationship between them. Our main result is to determine the poset of implications between these quasirandom properties. This answers a recent question of Chung and continues a project begun by Chung and Graham in their first paper on hypergraph quasirandomness in the early 1990s.
In 1989 Kalai stated the three conjectures A, B, C of increasing strength concerning face numbers of centrally symmetric convex polytopes. The weakest conjecture, A, became known as the ``$3^d$-conjecture. It is well-known that the three conjectures hold in dimensions d leq 3. We show that in dimension 4 only conjectures A and B are valid, while conjecture C fails. Furthermore, we show that both conjectures B and C fail in all dimensions d geq 5.
82 - Fuzhen Zhang 2016
We review and update on a few conjectures concerning matrix permanent that are easily stated, understood, and accessible to general math audience. They are: Soules permanent-on-top conjecture${}^dagger$, Lieb permanent dominance conjecture, Bapat and Sunder conjecture${}^dagger$ on Hadamard product and diagonal entries, Chollet conjecture on Hadamard product, Marcus conjecture on permanent of permanents, and several other conjectures. Some of these conjectures are recently settled; some are still open. We also raise a few new questions for future study. (${}^dagger$conjectures have been recently settled negatively.)
The partition lattice and noncrossing partition lattice are well studied objects in combinatorics. Given a graph $G$ on vertex set ${1,2,dots, n}$, its bond lattice, $L_G$, is the subposet of the partition lattice formed by restricting to the partiti ons whose blocks induce connected subgraphs of $G$. In this article, we introduce a natural noncrossing analogue of the bond lattice, the noncrossing bond poset, $NC_G$, obtained by restricting to the noncrossing partitions of $L_G$. Both the noncrossing partition lattice and the bond lattice have many nice combinatorial properties. We show that, for several families of graphs, the noncrossing bond poset also exhibits these properties. We present simple necessary and sufficient conditions on the graph to ensure the noncrossing bond poset is a lattice. Additionally, for several families of graphs, we give combinatorial descriptions of the Mobius function and characteristic polynomial of the noncrossing bond poset. These descriptions are in terms of a noncrossing analogue of non-broken circuit (NBC) sets of the graphs and can be thought of as a noncrossing version of Whitneys NBC theorem for the chromatic polynomial. We also consider the shellability and supersolvability of the noncrossing bond poset, providing sufficient conditions for both. We end with some open problems.
For a graph $G$, let $cp(G)$ denote the minimum number of cliques of $G$ needed to cover the edges of $G$ exactly once. Similarly, let $bp_k(G)$ denote the minimum number of bicliques (i.e. complete bipartite subgraphs of $G$) needed to cover each ed ge of $G$ exactly $k$ times. We consider two conjectures -- one regarding the maximum possible value of $cp(G) + cp(overline{G})$ (due to de Caen, ErdH{o}s, Pullman and Wormald) and the other regarding $bp_k(K_n)$ (due to de Caen, Gregory and Pritikin). We disprove the first, obtaining improved lower and upper bounds on $max_G cp(G) + cp(overline{G})$, and we prove an asymptotic version of the second, showing that $bp_k(K_n) = (1+o(1))n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا