ترغب بنشر مسار تعليمي؟ اضغط هنا

Bent by baryons: the low mass galaxy-halo relation

70   0   0.0 ( 0 )
 نشر من قبل Till Sawala
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Till Sawala




اسأل ChatGPT حول البحث

The relation between galaxies and dark matter halos is of vital importance for evaluating theoretical predictions of structure formation and galaxy formation physics. We show that the widely used method of abundance matching based on dark matter only simulations fails at the low mass end because two of its underlying assumptions are broken: only a small fraction of low mass (below 10^9.5 solar masses) halos host a visible galaxy, and halos grow at a lower rate due to the effect of baryons. In this regime, reliance on dark matter only simulations for abundance matching is neither accurate nor self-consistent. We find that the reported discrepancy between observational estimates of the halo masses of dwarf galaxies and the values predicted by abundance matching does not point to a failure of LCDM, but simply to a failure to account for baryonic effects. Our results also imply that the Local Group contains only a few hundred observable galaxies in contrast with the thousands of faint dwarfs that abundance matching would suggest. We show how relations derived from abundance matching can be corrected, so that they can be used self-consistently to calibrate models of galaxy formation.

قيم البحث

اقرأ أيضاً

High mass galaxies, with halo masses $M_{200} ge 10^{10} M_{odot}$, reveal a remarkable near-linear relation between their globular cluster (GC) system mass and their host galaxy halo mass. Extending this relation to the mass range of dwarf galaxies has been problematic due to the difficulty in measuring independent halo masses. Here we derive new halo masses based on stellar and HI gas kinematics for a sample of nearby dwarf galaxies with GC systems. We find that the GC system mass--halo mass relation for galaxies populated by GCs holds from halo masses of $M_{200} sim 10^{14} M_{odot}$ down to below $M_{200}$ $sim 10^9 M_{odot}$, although there is a substantial increase in scatter towards low masses. In particular, three well-studied ultra diffuse galaxies, with dwarf-like stellar masses, reveal a wide range in their GC-to-halo mass ratios. We compare our GC system--halo mass relation to the recent model of El Badry et al., finding that their fiducial model does not reproduce our data in the low mass regime. This may suggest that GC formation needs to be more efficient than assumed in their model, or it may be due to the onset of stochastic GC occupation in low mass halos. Finally, we briefly discuss the stellar mass-halo mass relation for our low mass galaxies with GCs, and we suggest some nearby dwarf galaxies for which searches for GCs may be fruitful.
We carry out a systematic investigation of the total mass density profile of massive (Mstar>2e11 Msun) early-type galaxies and its dependence on galactic properties and host halo mass with the aid of a variety of lensing/dynamical data and large mock galaxy catalogs. The latter are produced via semi-empirical models that, by design, are based on just a few basic input assumptions. Galaxies, with measured stellar masses, effective radii and S{e}rsic indices, are assigned, via abundance matching relations, host dark matter halos characterized by a typical LCDM profile. Our main results are as follows: (i) In line with observational evidence, our semi-empirical models naturally predict that the total, mass-weighted density slope at the effective radius gamma is not universal, steepening for more compact and/or massive galaxies, but flattening with increasing host halo mass. (ii) Models characterized by a Salpeter or variable initial mass function and uncontracted dark matter profiles are in good agreement with the data, while a Chabrier initial mass function and/or adiabatic contractions/expansions of the dark matter halos are highly disfavored. (iii) Currently available data on the mass density profiles of very massive galaxies (Mstar>1e12 Msun), with Mhalo>3e14 Msun, favor instead models with a stellar profile flatter than a S{e}rsic one in the very inner regions (r<3-5 kpc), and a cored NFW or Einasto dark matter profile with median halo concentration a factor of ~2 or <1.3, respectively, higher than those typically predicted by N-body numerical simulations.
The connection between dark matter halos and galactic baryons is often not well-constrained nor well-resolved in cosmological hydrodynamical simulations. Thus, Halo Occupation Distribution (HOD) models that assign galaxies to halos based on halo mass are frequently used to interpret clustering observations, even though it is well-known that the assembly history of dark matter halos is related to their clustering. In this paper we use high-resolution hydrodynamical cosmological simulations to compare the halo and stellar mass growth of galaxies in a large-scale overdensity to those in a large-scale underdensity (on scales of about 20 Mpc). The simulation reproduces assembly bias, that halos have earlier formation times in overdense environments than in underdense regions. We find that the stellar mass to halo mass ratio is larger in overdense regions in central galaxies residing in halos with masses between 10$^{11}$-10$^{12.9}$ M$_{odot}$. When we force the local density (within 2 Mpc) at z=0 to be the same for galaxies in the large-scale over- and underdensities, we find the same results. We posit that this difference can be explained by a combination of earlier formation times, more interactions at early times with neighbors, and more filaments feeding galaxies in overdense regions. This result puts the standard practice of assigning stellar mass to halos based only on their mass, rather than considering their larger environment, into question.
90 - Xiangcheng Ma 2015
We use high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environment (FIRE) project to study the galaxy mass-metallicity relations (MZR) from z=0-6. These simulations include explicit models of the multi-phase ISM, star formation, and stellar feedback. The simulations cover halo masses Mhalo=10^9-10^13 Msun and stellar mass Mstar=10^4-10^11 Msun at z=0 and have been shown to produce many observed galaxy properties from z=0-6. For the first time, our simulations agree reasonably well with the observed mass-metallicity relations at z=0-3 for a broad range of galaxy masses. We predict the evolution of the MZR from z=0-6 as log(Zgas/Zsun)=12+log(O/H)-9.0=0.35[log(Mstar/Msun)-10]+0.93 exp(-0.43 z)-1.05 and log(Zstar/Zsun)=[Fe/H]-0.2=0.40[log(Mstar/Msun)-10]+0.67 exp(-0.50 z)-1.04, for gas-phase and stellar metallicity, respectively. Our simulations suggest that the evolution of MZR is associated with the evolution of stellar/gas mass fractions at different redshifts, indicating the existence of a universal metallicity relation between stellar mass, gas mass, and metallicities. In our simulations, galaxies above Mstar=10^6 Msun are able to retain a large fraction of their metals inside the halo, because metal-rich winds fail to escape completely and are recycled into the galaxy. This resolves a long-standing discrepancy between sub-grid wind models (and semi-analytic models) and observations, where common sub-grid models cannot simultaneously reproduce the MZR and the stellar mass functions.
We present the detection of a giant radio halo (GRH) in the Sunyaev-Zeldovich (SZ)-selected merging galaxy cluster ACT-CL J0256.5+0006 ($z = 0.363$), observed with the Giant Metrewave Radio Telescope at 325 MHz and 610 MHz. We find this cluster to ho st a faint ($S_{610} = 5.6 pm 1.4$ mJy) radio halo with an angular extent of 2.6 arcmin, corresponding to 0.8 Mpc at the cluster redshift, qualifying it as a GRH. J0256 is one of the lowest-mass systems, $M_{rm 500,SZ} = (5.0 pm 1.2) times 10^{14} M_odot$, found to host a GRH. We measure the GRH at lower significance at 325 MHz ($S_{325} = 10.3 pm 5.3$ mJy), obtaining a spectral index measurement of $alpha^{610}_{325} = 1.0^{+0.7}_{-0.9}$. This result is consistent with the mean spectral index of the population of typical radio halos, $alpha = 1.2 pm 0.2$. Adopting the latter value, we determine a 1.4 GHz radio power of $P_{1.4text{GHz}} = (1.0 pm 0.3) times 10^{24}$ W Hz$^{-1}$, placing this cluster within the scatter of known scaling relations. Various lines of evidence, including the ICM morphology, suggest that ACT-CL J0256.5+0006 is composed of two subclusters. We determine a merger mass ratio of 7:4, and a line-of-sight velocity difference of $v_perp = 1880 pm 280$ km s$^{-1}$. We construct a simple merger model to infer relevant time-scales in the merger. From its location on the $P_{rm 1.4GHz}{-}L_{rm X}$ scaling relation, we infer that we observe ACT-CL J0256.5+0006 approximately 500 Myr before first core crossing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا