ﻻ يوجد ملخص باللغة العربية
We study the effects of flavor symmetry breaking on holographic dense matter and compact stars in the D4/D6 model. To this end, two light flavors and one intermediate mass flavor are considered. For two light quarks, we investigate how the strong isospin violation affects the properties of holographic dense matter and compact stars. We observe that quark-antiquark condensates are flavor dependent and show interesting behavior near the transition from dense matter with only one flavor to matter with two flavors. An intermediate mass quark is introduced to investigate the role of the third flavor. The mass-radius relations of holographic compact stars with three flavors show that the mass-radius curve changes drastically at a transition density from which the third flavor begins to appear in the matter.
Flavor symmetry has been widely studied for figuring out the masses and mixing angles of standard-model fermions. In this paper we present a framework for handling flavor symmetry breaking where the symmetry breaking is triggered by boundary conditio
Since the work of Ryu and Takayanagi, deep connections between quantum entanglement and spacetime geometry have been revealed. The negative eigenvalues of the partial transpose of a bipartite density operator is a useful diagnostic of entanglement. I
We explore the far from equilibrium response of a holographic superfluid using the AdS/CFT correspondence. We establish the dynamical phase diagram corresponding to quantum quenches of the order parameter source field. We find three distinct regimes
We discuss the recombination of brane/anti-brane pairs carrying $D3$ brane charge in $AdS_5 times S^5$. These configurations are dual to co-dimension one defects in the ${cal N}=4$ super-Yang-Mills description. Due to their $D3$ charge, these defects
In $XQM$, a quark can emit Goldstone bosons. The flavor symmetry breaking in the Goldstone boson emission process is used to intepret the nucleon flavor-spin structure. In this paper, we study the inner structure of constituent quarks implied in $XQM