ترغب بنشر مسار تعليمي؟ اضغط هنا

Explicit flavor symmetry breaking and holographic compact stars

109   0   0.0 ( 0 )
 نشر من قبل Ik Jae Shin
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effects of flavor symmetry breaking on holographic dense matter and compact stars in the D4/D6 model. To this end, two light flavors and one intermediate mass flavor are considered. For two light quarks, we investigate how the strong isospin violation affects the properties of holographic dense matter and compact stars. We observe that quark-antiquark condensates are flavor dependent and show interesting behavior near the transition from dense matter with only one flavor to matter with two flavors. An intermediate mass quark is introduced to investigate the role of the third flavor. The mass-radius relations of holographic compact stars with three flavors show that the mass-radius curve changes drastically at a transition density from which the third flavor begins to appear in the matter.

قيم البحث

اقرأ أيضاً

Flavor symmetry has been widely studied for figuring out the masses and mixing angles of standard-model fermions. In this paper we present a framework for handling flavor symmetry breaking where the symmetry breaking is triggered by boundary conditio ns of scalar fields in extra-dimensional space. The alignment of scalar expectation values is achieved without referring to any details of scalar potential and its minimization procedure. As applications to non-abelian discrete flavor symmetries, illustrative lepton mass models are constructed where the S3 and A4 flavor symmetries are broken down to the directions leading to the tri-bimaximal form of lepton mixing and realistic mass patterns.
Since the work of Ryu and Takayanagi, deep connections between quantum entanglement and spacetime geometry have been revealed. The negative eigenvalues of the partial transpose of a bipartite density operator is a useful diagnostic of entanglement. I n this paper, we discuss the properties of the associated entanglement negativity and its Renyi generalizations in holographic duality. We first review the definition of the Renyi negativities, which contain the familiar logarithmic negativity as a special case. We then study these quantities in the random tensor network model and rigorously derive their large bond dimension asymptotics. Finally, we study entanglement negativity in holographic theories with a gravity dual, where we find that Renyi negativities are often dominated by bulk solutions that break the replica symmetry. From these replica symmetry breaking solutions, we derive general expressions for Renyi negativities and their special limits including the logarithmic negativity. In fixed-area states, these general expressions simplify dramatically and agree precisely with our results in the random tensor network model. This provides a concrete setting for further studying the implications of replica symmetry breaking in holography.
We explore the far from equilibrium response of a holographic superfluid using the AdS/CFT correspondence. We establish the dynamical phase diagram corresponding to quantum quenches of the order parameter source field. We find three distinct regimes of behaviour that are related to the spectrum of black hole quasi-normal modes. These correspond to damped oscillations of the order parameter, and over-damped approaches to the superfluid and normal states. The presence of three regimes, which includes an emergent dynamical temperature scale, is argued to occur more generally in time-reversal invariant systems that display continuous symmetry breaking.
We discuss the recombination of brane/anti-brane pairs carrying $D3$ brane charge in $AdS_5 times S^5$. These configurations are dual to co-dimension one defects in the ${cal N}=4$ super-Yang-Mills description. Due to their $D3$ charge, these defects are actually domain walls in the dual gauge theory, interpolating between vacua of different gauge symmetry. A pair of unjoined defects each carry localized $(2+1)$ dimensional fermions and possess a global $U(N)times U(N)$ flavor symmetry while the recombined brane/anti-brane pairs exhibit only a diagonal U(N). We study the thermodynamics of this flavor-symmetry breaking under the influence of external magnetic field.
In $XQM$, a quark can emit Goldstone bosons. The flavor symmetry breaking in the Goldstone boson emission process is used to intepret the nucleon flavor-spin structure. In this paper, we study the inner structure of constituent quarks implied in $XQM $ caused by the Goldstone boson emission process in nucleon. From a simplified model Hamiltonian derived from $XQM$, the intrinsic wave functions of constituent quarks are determined. Then the obtained transition probabilities of the emission of Goldstone boson from a quark can give a reasonable interpretation to the flavor symmetry breaking in nucleon flavor-spin structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا