ﻻ يوجد ملخص باللغة العربية
Let K be a complete discretely valued field with residue field k. If char(K) = 0, char(k) = 2 and the 2-rank of k is d, we prove that there exists an integer N depending on d such that the u-invariant of any function field in one variable over K is bounded by N. The method of proof is via introducing the notion of uniform boundedness for the p-torsion of the Brauer group of a field and relating the uniform boundedness of the 2-torsion of the Brauer group to finiteness of the u-invariant. We prove that the 2-torsion of the Brauer group of function fields in one variable over K are uniformly bounded.
Let K be a complete discretely valued field and F the function field of a curve over K. If the characteristic of the residue field k of K is p > 0, then we give a bound for the Brauer p-simension of F in terms of the p-rank of k. If k is a perfect fi
We provide in this paper an upper bound for the number of rational points on a curve defined over a one variable function field over a finite field. The bound only depends on the curve and the field, but not on the Jacobian variety of the curve.
We prove two theorems concerning isogenies of elliptic curves over function fields. The first one describes the variation of the height of the $j$-invariant in an isogeny class. The second one is an isogeny estimate, providing an explicit bound on th
Let $C$ be a smooth projective curve over $mathbb{F}_q$ with function field $K$, $E/K$ a nonconstant elliptic curve and $phi:mathcal{E}to C$ its minimal regular model. For each $Pin C$ such that $E$ has good reduction at $P$, i.e., the fiber $mathcal
We study the Jacobian $J$ of the smooth projective curve $C$ of genus $r-1$ with affine model $y^r = x^{r-1}(x + 1)(x + t)$ over the function field $mathbb{F}_p(t)$, when $p$ is prime and $rge 2$ is an integer prime to $p$. When $q$ is a power of $p$