ترغب بنشر مسار تعليمي؟ اضغط هنا

The virtual observatory service TheoSSA: Establishing a database of synthetic stellar flux standards. II. NLTE spectral analysis of the OB-type subdwarf Feige 110

35   0   0.0 ( 0 )
 نشر من قبل Dr. Thomas Rauch
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Rauch




اسأل ChatGPT حول البحث

In the framework of the Virtual Observatory (VO), the German Astrophysical Virtual Observatory (GAVO) developed the registered service TheoSSA (Theoretical Stellar Spectra Access). It provides easy access to stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code, generally for all effective temperature, surface gravities, and elemental compositions. We will establish a database of SEDs of flux standards that are easily accessible via TheoSSAs web interface. The OB-type subdwarf Feige 110 is a standard star for flux calibration. State-of-the-art non-local thermodynamic equilibrium (NLTE) stellar-atmosphere models that consider opacities of species up to trans-iron elements will be used to provide a reliable synthetic spectrum to compare with observations. In case of Feige 110, we demonstrate that the model reproduces not only its overall continuum shape from the far-ultraviolet (FUV) to the optical wavelength range but also the numerous metal lines exhibited in its FUV spectrum. We present a state-of-the-art spectral analysis of Feige 110. We determined $T_mathrm{eff} = 47,250 pm 2000,mathrm{K}$, $log g = 6.00 pm 0.20$ and the abundances of He, N, P, S, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, and Ge. Ti, V, Mn, Co, Zn, and Ge were identified for the first time in this star. Upper abundance limits were derived for C, O, Si, Ca, and Sc. The TheoSSA database of theoretical SEDs of stellar flux standards guarantees that the flux calibration of astronomical data and cross-calibration between different instruments can be based on models and SEDs calculated with state-of-the-art model-atmosphere codes.

قيم البحث

اقرأ أيضاً

40 - T. Rauch 2013
H-rich, DA-type white dwarfs are particularly suited as primary standard stars for flux calibration. State-of-the-art NLTE models consider opacities of species up to trans-iron elements and provide reliable synthetic stellar-atmosphere spectra to com pare with observation. We establish a database of theoretical spectra of stellar flux standards that are easily accessible via a web interface. In the framework of the Virtual Observatory, the German Astrophysical Virtual Observatory developed the registered service TheoSSA. It provides easy access to stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code. In case of the DA white dwarf G 191-B2B, we demonstrate that the model reproduces not only its overall continuum shape but also the numerous metal lines exhibited in its ultraviolet spectrum. TheoSSA is in operation and contains presently a variety of SEDs for DA white dwarfs. It will be extended in the near future and can host SEDs of all primary and secondary flux standards. The spectral analysis of G 191-B2B has shown that our hydrostatic models reproduce the observations best at an effective temperature of 60000 +/- 2000K and a surface gravity of log g = 7.60 +/- 0.05. We newly identified Fe VI, Ni VI, and Zn IV lines. For the first time, we determined the photospheric zinc abundance with a logarithmic mass fraction of -4.89 (7.5 times solar). The abundances of He (upper limit), C, N, O, Al, Si, O, P, S, Fe, Ni, Ge, and Sn were precisely determined. Upper abundance limits of 10% solar were derived for Ti, Cr, Mn, and Co. The TheoSSA database of theoretical SEDs of stellar flux standards guarantees that the flux calibration of all astronomical data and cross-calibration between different instruments can be based on the same models and SEDs calculated with different model-atmosphere codes and are easy to compare.
376 - T. Rauch 2018
The German Astrophysical Virtual Observatory (GAVO) developed the registered service TheoSSA (theoretical stellar spectra access) and the supporting registered VO tool TMAW (Tuebingen Model-Atmosphere WWW interface). These allow individual spectral a nalyses of hot, compact stars with state-of-the-art non-local thermodynamical equilibrium (NLTE) stellar-atmosphere models that presently consider opacities of the elements H, He, C, N, O, Ne, Na, and Mg, without requiring detailed knowledge about the involved background codes and procedures. Presently, TheoSSA provides easy access to about 150000 pre-calculated stellar SEDs and is intended to ingest SEDs calculated by any model-atmosphere code. In the case of the exciting star of PRTM 1, we demonstrate the easy way to calculate individual NLTE stellar model-atmospheres to reproduce an observed optical spectrum. We measured Teff = 98000 +/- 5000 K, log (g / cm/s**2) = 5.0 (+0.3/-0.2) and photospheric mass fractions of H = 7.5 x 10**-1 (1.02 times solar), He = 2.4 x 10**-1 (0.96), C = 2.0 x 10**-3 (0.84), N = 3.2 x 10**-4 (0.46), O = 8.5 x 10**-3 (1.48) with uncertainties of +/- 0.2 dex. We determined the stellar mass and luminosity of 0.73 (+0.16/-0.15) Msun and log (L / Lsun) = 4.2 +/- 0.4, respectively.
98 - Enrique Solano 2013
This paper describes the main characteristics of the Virtual Observatory as a research infrastructure in Astronomy, and identifies those fields in which it can be of help for the community of spectral stellar libraries.
We combine the NLTE spectral analysis of the detached O-type eclipsing binary OGLE-LMC-ECL-06782 with the analysis of the radial velocity curve and light curve to measure an independent distance to the LMC. In our spectral analysis we study composite spectra of the system at quadrature and use the information from radial velocity and light curve about stellar gravities, radii and component flux ratio to derive effective temperature, reddening, extinction and intrinsic surface brightness. We obtain a distance modulus to the LMC of m - M = 18.53 +/- 0.04 mag. This value is 0.05 mag larger than the precision distance obtained recently from the analysis of a large sample of detached, long period late spectral type eclipsing binaries but agrees within the margin of the uncertainties. We also determine the surface brightnesses of the system components and find good agreement with the published surface brightness color relationship. A comparison of the observed stellar parameters with the prediction of stellar evolution based on the MESA stellar evolution code shows reasonable agreement, but requires a reduction of the internal angular momentum transport to match the observed rotational velocities.
VO-KOREL is a web service exploiting the technology of Virtual Observatory for providing the astronomers with the intuitive graphical front-end and distributed computing back-end running the most recent version of Fourier disentangling code KOREL. The system integrates the ideas of the e-shop basket, conserving the privacy of every user by transfer encryption and access authentication, with features of laboratory notebook, allowing the easy housekeeping of both input parameters and final results, as well as it explores a newly emerging technology of cloud computing. While the web-based front-end allows the user to submit data and parameter files, edit parameters, manage a job list, resubmit or cancel running jobs and mainly watching the text and graphical results of a disentangling process, the main part of the back-end is a simple job queue submission system executing in parallel multiple instances of FORTRAN code KOREL. This may be easily extended for GRID-based deployment on massively parallel computing clusters. The short introduction into underlying technologies is given, briefly mentioning advantages as well as bottlenecks of the design used.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا