ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards early-type eclipsing binaries as extragalactic milestones: II. NLTE spectral analysis and stellar parameters of the detached O-type system OGLE-LMC-ECL-06782 in the LMC

87   0   0.0 ( 0 )
 نشر من قبل M\\'onica Taormina
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine the NLTE spectral analysis of the detached O-type eclipsing binary OGLE-LMC-ECL-06782 with the analysis of the radial velocity curve and light curve to measure an independent distance to the LMC. In our spectral analysis we study composite spectra of the system at quadrature and use the information from radial velocity and light curve about stellar gravities, radii and component flux ratio to derive effective temperature, reddening, extinction and intrinsic surface brightness. We obtain a distance modulus to the LMC of m - M = 18.53 +/- 0.04 mag. This value is 0.05 mag larger than the precision distance obtained recently from the analysis of a large sample of detached, long period late spectral type eclipsing binaries but agrees within the margin of the uncertainties. We also determine the surface brightnesses of the system components and find good agreement with the published surface brightness color relationship. A comparison of the observed stellar parameters with the prediction of stellar evolution based on the MESA stellar evolution code shows reasonable agreement, but requires a reduction of the internal angular momentum transport to match the observed rotational velocities.

قيم البحث

اقرأ أيضاً

In this first paper of the series we describe our project to calibrate the distance determination method based on early-type binary systems. The final objective is to measure accurate, geometrical distances to galaxies beyond the Magellanic Clouds wi th a precision of 2%. We start with the analysis of two early-type systems for which we have collected all the required spectroscopic and photometric data. Apart from catalog publications, these systems have not been studied yet, and it is the first time the modeling of light and radial velocity curves is performed for them. From the analysis we obtained precise physical parameters of the components, including the masses measured with precision of 0.6-1% and radii with precision of 0.4-3%. For one system we determined the $(V-K)$ color and estimated the distance using the bolometric flux scaling method (DM=18.47 $pm$ 0.15 mag), which agrees well with our accurate determination of the distance to the LMC from late-type giants. For the same system we determined the surface brightness of individual stars using our model, and checked that it is consistent with a recent surface brightness -- color relation. We compared our results with evolution theory models of massive stars and found they agree in general, however, models with higher overshooting values give more consistent results. The age of the system was estimated to from 11.7 to 13.8 Myr, depending on the model.
We present an analysis of a new detached eclipsing binary, OGLE-LMC-ECL-25658, in the Large Magellanic Cloud. The system consists of two late G-type giant stars on an eccentric orbit and orbital period of ~200 days. The system shows total eclipses an d the components have similar temperatures, making it ideal for a precise distance determination. Using multi-color photometric and high resolution spectroscopic data, we have performed an analysis of light and radial velocity curves simultaneously using the Wilson Devinney code. We derived orbital and physical parameters of the binary with a high precision of < 1 %. The masses and surface metallicities of the components are virtually the same and equal to 2.23 +/- 0.02 M_sun and [Fe/H] = -0.63 +/- 0.10 dex. However their radii and rates of rotation show a distinct trace of differential stellar evolution. The distance to the system was calculated using an infrared calibration between V-band surface brightness and (V-K) color, leading to a distance modulus of (m-M) = 18.452 +/- 0.023 (statistical) +/- 0.046 (systematic). Because OGLE-LMC-ECL-25658 is located relatively far from the LMC barycenter we applied a geometrical correction for its position in the LMC disc using the van der Marel et al. model of the LMC. The resulting barycenter distance to the galaxy is d_LMC = 50.30 +/- 0.53 (stat.) kpc, and is in perfect agreement with the earlier result of Pietrzynski et al.(2013).
We investigate the nature of the unusual eclipsing star OGLE LMC-ECL-11893 (OGLE J05172127-6900558) in the Large Magellanic Cloud recently reported by Dong et al. 2014. The eclipse period for this star is 468 days, and the eclipses exhibit a minimum of ~1.4 mag, preceded by a plateau of ~0.8 mag. Spectra and optical/IR photometry are consistent with the eclipsed star being a lightly reddened B9III star of inferred age ~150 Myr and mass of ~4 solar masses. The disk appears to have an outer radius of ~0.2 AU with predicted temperatures of ~1100-1400 K. We model the eclipses as being due to either a transiting geometrically thin dust disk or gaseous accretion disk around a secondary object; the debris disk produces a better fit. We speculate on the origin of such a dense circumstellar dust disk structure orbiting a relatively old low-mass companion, and on the similarities of this system to the previously discovered EE Cep.
This paper presents a detailed analysis of the light and radial velocity curves of the semi-detached eclipsing binary system OGLE-LMC-ECL-09937. The system is composed of a hot, massive and luminous primary star of a late-O spectral type, and a more evolved, but less massive and luminous secondary, implying an Algol-type system that underwent a mass transfer episode. We derive masses of 21.04 +/- 0.34 M_Sun and 7.61 +/- 0.09 M_Sun and radii of 9.93 +/- 0.06 R_Sun and 9.18 +/- 0.04 R_Sun, for the primary and the secondary component, respectively, which make it the most massive known Algol-type system with masses and radii of the components measured with <2% accuracy. Consequently, the parameters of OGLE-LMC-ECL-09937 provide an important contribution to the sparsely populated high-mass end of the stellar mass distribution, and an interesting object for stellar evolution studies, being a possible progenitor of a binary system composed of two neutron stars.
We present results from the Large Magellanic Cloud Near-infrared Synoptic Survey (LMCNISS) for classical and type II Cepheid variables that were identified by the Optical Gravitational Lensing Experiment (OGLE-III) catalogue. Multiwavelength time-ser ies data for classical Cepheid variables are used to study light-curve structures as a function of period and wavelength. We exploit a sample of $sim$1400 classical and $sim$80 type II Cepheid variables to derive Period--Wesenheit relations that combine both optical and near-infrared data. The new Period--Luminosity and Wesenheit relations are used to estimate distances to several Local Group galaxies (using classical Cepheids) and to Galactic globular clusters (using type II Cepheids). By appealing to a statistical framework, we find that fundamental-mode classical Cepheid Period--Luminosity relations are non-linear around 10--18 days at optical and near-IR wavelengths. We also suggest that a non-linear relation provides a better constraint on the Cepheid Period--Luminosity relation in type Ia Supernovae host galaxies, though it has a negligible effect on the systematic uncertainties affecting the local measurement of the Hubble constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا