ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the background in Auger-photoemission coincidence spectra (APECS) associated with inelastic or multi-electron valence band photoemission processes

100   0   0.0 ( 0 )
 نشر من قبل Suman Satyal
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Auger Photoelectron Coincidence Spectroscopy (APECS), in which the Auger spectra is measured in coincidence with the core level photoelectron, is capable of pulling difficult to observe low energy Auger peaks out of a large background due mostly to inelastically scattered valence band (VB) photoelectrons. However the APECS method alone cannot eliminate the background due to valence band photoemission processes in which the initial photon energy is shared by two or more electrons and one of the electrons is in the energy range of the core level photoemission peak. Here we describe an experimental method to determine the contributions from these background processes and apply this method in the case of Copper M3VV Auger spectrum obtained in coincidence with the 3p3/2 photoemission peak. A beam of 200 eV photons was incident on a Cu(100) sample and a series of coincidence measurements were performed using a spectrometer equipped with two cylindrical mirror analyzers (CMAs). One CMA was set at series of fixed energies that ranged between the energy of the core and the VB peaks. The other CMA was scanned over a range corresponding to electrons leaving the surface between 0eV and 70eV. The set of measured spectra were then fit to a parameterized function which was extrapolated to determine the background in the APECS spectra due to multi-electron and inelastic VB photoemission processes. The extrapolated background was subtracted from the APECS spectrum to obtain the spectrum of electrons emitted solely as the result of the Auger process. A comparison of the coincidence spectrum with the same spectrum with background removed shows that in the case of Cu M3VV the background due to the inelastic scattering of VB electrons is negligible in the region of the Auger peak but is more than half the total signal down in the low energy tail of the Auger peak.



قيم البحث

اقرأ أيضاً

Adsorption of organic molecules on well-oriented single crystal coinage metal surfaces fundamentally affects the energy distribution curve of ultra-violet photoelectron spectroscopy spectra. New features not present in the spectrum of the pristine me tal can be assigned as interface states having some degree of molecule-substrate hybridization. Here it is shown that interface states having molecular orbital character can easily be identified at low binding energy as isolated features above the featureless substrate sp-plateau. On the other hand much care must be taken in assigning adsorbate-induced features when these lie within the d-band spectral region of the substrate. In fact, features often interpreted as characteristic of the molecule-substrate interaction may actually arise from substrate photoelectrons scattered by the adsorbates. This phenomenon is illustrated through a series of examples of noble-metal single-crystal surfaces covered by monolayers of large pi-conjugated organic molecules.
We introduce a new method for determining accurate values of the valence-band maximum in x-ray photoemission spectra. Specifically, we align the sharpest peak in the valence-band region of the experimental spectrum with the corresponding feature of a theoretical valence-band density of states curve from ab initio GW theory calculations. This method is particularly useful for soft and hard x-ray photoemission studies of materials with a mixture of valence-band characters, where strong matrix element effects can render standard methods for extracting the valence-band maximum unreliable. We apply our method to hydrogen-terminated boron-doped diamond, which is a promising substrate material for novel solar cell devices. By carrying out photoemission experiments with variable light polarizations, we verify the accuracy of our analysis and the general validity of the method.
IV-VI semiconductor SnSe has been known as the material with record high thermoelectric performance.The multiple close-to-degenerate valence bands in the electronic band structure has been one of the key factors contributing to the high power factor and thus figure of merit in the SnSe single crystal. To date, there have been primarily theoretical calculations of this particular electronic band structure. In this paper, however, using angle-resolved photoemission spectroscopy, we perform a systematic investigation of the electronic structure of SnSe. We directly observe three predicted hole bands with small energy differences between their band tops and relatively small in-plane effective masses, in good agreement with the ab initio calculations and critical for the enhancement of the Seebeck coefficient while keeping high electrical conductivity. Our results reveal the complete band structure of SnSe and help to provide a deeper understanding of the electronic origin of the excellent thermoelectric performances in SnSe.
We have re-examined the valence-band (VB) and core-level electronic structure of NiO by means of hard and soft x-ray photoemission spectroscopy (PES). The spectral weight of the lowest energy state found to be enhanced in the bulk sensitive Ni 2p cor e-level PES. A configuration-interaction model including the bound state screening has shown significant agreement with the core-level spectra, and the off and on-resonance VB spectra. These results identify the lowest energy state in core-level and VB-PES as the Zhang-Rice doublet bound state, consistent with the spin-fermion model and recent ab initio calculation with dynamical mean-field theory (LDA + DMFT).
We have studied the O 2p valence-band structure of Nb-doped SrTiO3, in which a dilute concentration of electrons are doped into the d0 band insulator, by angle-resolved photoemission spectroscopy (ARPES) measurements. We found that ARPES spectra at t he valence band maxima at the M [k = (pi/a, pi/a, 0)]and R [k = (pi/a, pi/a, pi/a)] points start from ~ 3.3 eV below the Fermi level (EF), consistent with the indirect band gap of 3.3 eV and the EF position at the bottom of the conduction band. The peak position of the ARPES spectra were, however, shifted toward higher binding energies by ~ 500 meV from the 3.3 eV threshold. Because the bands at M and R have pure O 2p character, we attribute this ~ 500 meV shift to strong coupling of the oxygen p hole with optical phonons in analogy with the peak shifts observed for d-electron photoemission spectra in various transition-metal oxides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا