ترغب بنشر مسار تعليمي؟ اضغط هنا

Reduction of local velocity spreads by linear potentials

44   0   0.0 ( 0 )
 نشر من قبل David Guery-Odelin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the spreading of the wave function of a Bose-Einstein condensate accelerated by a constant force both in the absence and in the presence of atom-atom interactions. We show that, despite the initial velocity dispersion, the local velocity dispersion defined at a given position downward can reach ultralow values and be used to probe very narrow energetic structures. We explain how one can define quantum mechanically and without ambiguities the different velocity moments at a given position by extension of their classical counterparts. We provide a common theoretical framework for interacting and non-interacting regimes based on the Wigner transform of the initial wave function that encapsulates the dynamics in a scaling parameter. In the absence of interaction, our approach is exact. Using a numerical simulation of the 1D Gross-Pitaevskii equation, we provide the range of validity of our scaling approach and find a very good agreement in the Thomas-Fermi regime. We apply this approach to the study of the scattering of a matter wave packet on a double barrier potential. We show that a Fabry-Perot resonance in such a cavity with an energy width below the pK range can be probed in this manner. We show that our approach can be readily transposed to a large class of many-body quantum systems that exhibit self-similar dynamics.

قيم البحث

اقرأ أيضاً

We show that a linear term coupling the atoms of an ultracold binary mixture provides a simple method to induce an effective and tunable population imbalance between them. This term is easily realized by a Rabi coupling between different hyperfine le vels of the same atomic species. The resulting effective imbalance holds for one-particle states dressed by the Rabi coupling and obtained diagonalizing the mixing matrix of the Rabi term. This way of controlling the chemical potentials applies for both bosonic and fermionic atoms and it allows also for spatially and temporally dependent imbalances. As a first application, we show that, in the case of two attractive fermionic hyperfine levels with equal chemical potentials and coupled by the Rabi pulse, the same superfluid properties of an imbalanced binary mixture are recovered. We finally discuss the properties of m-species mixtures in the presence of SU(m)-invariant interactions.
65 - Yanliang Guo 2021
We report the observation of dramatic consequences of dimensional reduction onto the motional state of a quantum gas restricted to a curved two-dimensional surface. We start from the ellipsoidal geometry of a dressed quadrupole trap and introduce a n ovel gravity compensation mechanism enabling to explore the full ellipsoid. The dimensional reduction manifests itself by the spontaneous emergence of an annular shape in the atomic distribution, due to the zero-point energy of the transverse confinement. The experimental results are compared with the solution of the three dimensional Gross-Pitaevskii equation and with a two-dimensional semi-analytical model. This work evidences how a hidden dimension can affect dramatically the embedded low dimensional system by inducing a change of topology.
The study of the properties of quantum particles in a periodic potential subject to a magnetic field is an active area of research both in physics and mathematics; it has been and it is still deeply investigated. In this review we discuss how to impl ement and describe tunable Abelian magnetic fields in a system of ultracold atoms in optical lattices. After discussing two of the main experimental schemes for the physical realization of synthetic gauge potentials in ultracold set-ups, we study cubic lattice tight-binding models with commensurate flux. We finally examine applications of gauge potentials in one-dimensional rings.
We propose and analyze a scheme to entangle the collective spin states of two spatially separated bimodal Bose-Einstein condensates. Using a four-mode approximation for the atomic field, we show that elastic collisions in a state-dependent potential simultaneously create spin-squeezing in each condensate and entangle the collective spins of the two condensates. We investigate mostly analytically the non-local quantum correlations that arise in this system at short times and show that Einstein-Podolsky-Rosen (EPR) entanglement is generated between the condensates. At long times we point out macroscopic entangled states and explain their structure. The scheme can be implemented with condensates in state-dependent microwave potentials on an atom chip.
74 - Michael L. Wall 2020
We study spin-1/2 fermions in spin dependent potentials under the emph{spin model approximation}, in which interatomic collisions that change the total occupation of single-particle modes are ignored. The spin model approximation maps the interacting fermion problem to an ensemble of lattice spin models in energy space, where spin-spin interactions are long-ranged and spin-anisotropic. We show that the spin model approximation is accurate for weak interactions compared to the harmonic oscillator frequency, and captures the collective spin dynamics to timescales much longer than would be expected from perturbation theory. We explore corrections to the spin model, and the relative importance of corrections when realistic anharmonic potential corrections are taken into account. Additionally, we present numerical techniques that are useful for analysis of spin models on an energy lattice, including enacting a change of single-particle basis on a many-body state as an effective time evolution, and fitting of spatially inhomogeneous long-range interactions with exponentials. This latter technique is useful for constructing matrix product operators for use in DMRG analyses, and may have broader applicability within the tensor network community.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا