ﻻ يوجد ملخص باللغة العربية
We propose and analyze a scheme to entangle the collective spin states of two spatially separated bimodal Bose-Einstein condensates. Using a four-mode approximation for the atomic field, we show that elastic collisions in a state-dependent potential simultaneously create spin-squeezing in each condensate and entangle the collective spins of the two condensates. We investigate mostly analytically the non-local quantum correlations that arise in this system at short times and show that Einstein-Podolsky-Rosen (EPR) entanglement is generated between the condensates. At long times we point out macroscopic entangled states and explain their structure. The scheme can be implemented with condensates in state-dependent microwave potentials on an atom chip.
Infinite-range interactions are known to facilitate the production of highly entangled states with applications in quantum information and metrology. However, many experimental systems have interactions that decay with distance, and the achievable be
We study spin-1/2 fermions in spin dependent potentials under the emph{spin model approximation}, in which interatomic collisions that change the total occupation of single-particle modes are ignored. The spin model approximation maps the interacting
We study generation of non-local correlations by atomic interactions in a pair of bi-modal Bose-Einstein Condensates in state-dependent potentials including spatial dynamics. The wave-functions of the four components are described by combining a Fock
Recent experiments with dilute trapped Fermi gases observed that weak interactions can drastically modify spin transport dynamics and give rise to robust collective effects including global demagnetization, macroscopic spin waves, spin segregation, a
We study entanglement and squeezing of two uncoupled impurities immersed in a Bose-Einstein condensate. We treat them as two quantum Brownian particles interacting with a bath composed of the Bogoliubov modes of the condensate. The Langevin-like quan