ﻻ يوجد ملخص باللغة العربية
The future linear collider will collide dense $e^+e^-$ bunches at high energies up to 1 TeV, generating very intense electromagnetic fields at the interaction point (IP). These fields are strong enough to lead to nonlinear effects which affect all IP processes and which are described by strong field physics theory. In order to test this theory, we propose an experiment that will focus an intense laser on the LC electron beam post-IP. Similar experiments at SLAC E144 have investigated nonlinear Compton scattering, Breit-Wheeler pair production using an electron beam of 46.6 GeV. The higher beam energies available at the future LC would allow more precise studies of these phenomena. Mass-shift and spin-dependent effects could also be investigated.
The physics programme for a coming electron linear collider is dominated by events with final states containing many jets. We develop in this paper the opinion that the best approach is to optimise the independent measurement of the tracks in the tra
At a future linear collider, a polarized electron beam will play an important role in interpreting new physics signals. Backgrounds to a new physics reaction can be reduced by choice of the electron polarization state. The origin of a new physics rea
Supersymmetry predicts that gauge couplings are equal to the corresponding gaugino-sfermion-fermion Yukawa couplings. This prediction can be tested for the QCD sector of the MSSM by studying the processes eplus+eminus -> squark+antisquark+gluon and e
The recoil associated with photon emission is key to the dynamics of ultrarelativistic electrons in strong electromagnetic fields, as are found in high-intensity laser-matter interactions and astrophysical environments such as neutron star magnetosph
The scalar top discovery potential has been studied with a full-statistics background simulation for sqrt(s) = 500 GeV and L = 500 fb-1. The simulation is based on a fast and realistic simulation of a TESLA detector. The large simulated data sample a