ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing nonlinear-QED at the future linear collider with an intense laser

80   0   0.0 ( 0 )
 نشر من قبل Anthony Hartin
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The future linear collider will collide dense $e^+e^-$ bunches at high energies up to 1 TeV, generating very intense electromagnetic fields at the interaction point (IP). These fields are strong enough to lead to nonlinear effects which affect all IP processes and which are described by strong field physics theory. In order to test this theory, we propose an experiment that will focus an intense laser on the LC electron beam post-IP. Similar experiments at SLAC E144 have investigated nonlinear Compton scattering, Breit-Wheeler pair production using an electron beam of 46.6 GeV. The higher beam energies available at the future LC would allow more precise studies of these phenomena. Mass-shift and spin-dependent effects could also be investigated.



قيم البحث

اقرأ أيضاً

58 - J-C. Brient , H. Videau 2002
The physics programme for a coming electron linear collider is dominated by events with final states containing many jets. We develop in this paper the opinion that the best approach is to optimise the independent measurement of the tracks in the tra cker, the photons in the electromagnetic calorimeter and the neutral hadrons in the camorimetry, together with a good lepton identification. This can be achieved with a high granularity calorimetry providing particle separation, through an efficient energy flow algorithm.
81 - M. Woods 2000
At a future linear collider, a polarized electron beam will play an important role in interpreting new physics signals. Backgrounds to a new physics reaction can be reduced by choice of the electron polarization state. The origin of a new physics rea ction can be clarified by measuring its polarization-dependence. This paper examines some options for polarimetry with an emphasis on physics issues that motivate how precise the polarization determination needs to be. In addition to Compton polarimetry, the possibility of using Standard Model asymmetries, such as the asymmetry in forward W-pairs, is considered as a possible polarimeter. Both e+e- and e-e- collider modes are considered.
Supersymmetry predicts that gauge couplings are equal to the corresponding gaugino-sfermion-fermion Yukawa couplings. This prediction can be tested for the QCD sector of the MSSM by studying the processes eplus+eminus -> squark+antisquark+gluon and e plus+eminus -> squark+antiquark+gluino at a future linear collider. We present results for these processes at next-to-leading order in alpha_s in the framework of the MSSM. We find sizable SUSY-QCD corrections. The renormalization scale dependence is significantly reduced at next-to-leading order.
The recoil associated with photon emission is key to the dynamics of ultrarelativistic electrons in strong electromagnetic fields, as are found in high-intensity laser-matter interactions and astrophysical environments such as neutron star magnetosph eres. When the energy of the photon becomes comparable to that of the electron, it is necessary to use quantum electrodynamics (QED) to describe the dynamics accurately. However, computing the appropriate scattering matrix element from strong-field QED is not generally possible due to multiparticle effects and the complex structure of the electromagnetic fields. Therefore these interactions are treated semiclassically, coupling probabilistic emission events to classical electrodynamics using rates calculated in the locally constant field approximation. Here we provide comprehensive benchmarking of this approach against the exact QED calculation for nonlinear Compton scattering of electrons in an intense laser pulse. We find agreement at the percentage level between the photon spectra, as well as between the models predictions of absorption from the background field, for normalized amplitudes $a_0 > 5$. We discuss possible routes towards improved numerical methods and the implications of our results for the study of QED cascades.
The scalar top discovery potential has been studied with a full-statistics background simulation for sqrt(s) = 500 GeV and L = 500 fb-1. The simulation is based on a fast and realistic simulation of a TESLA detector. The large simulated data sample a llowed the application of an Iterative Discriminant Analysis (IDA) which led to a significantly higher sensitivity than in previous studies. The effects of beam polarization on signal efficiency and individual background channels are studied using separate optimization with the IDA for both polarization states. The beam polarization is very important to measure the scalar top mixing angle and to determine its mass. Simulating a 180 GeV scalar top at minimum production cross section, we obtain Delta(m) = 1 GeV and Delta(cos(theta)) = 0.009.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا