ترغب بنشر مسار تعليمي؟ اضغط هنا

Age Aspects of Habitability

42   0   0.0 ( 0 )
 نشر من قبل Margarita Safonova Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A habitable zone of a star is defined as a range of orbits within which a rocky planet can support liquid water on its surface. The most intriguing question driving the search for habitable planets is whether they host life. But is the age of the planet important for its habitability? If we define habitability as the ability of a planet to beget life, then probably not. After all, life on Earth has developed within only about 800 Myr after its formation. If, however, we define habitability as our ability to detect life on the surface of exoplanets, then age becomes a crucial parameter. Only after life had evolved sufficiently complex to change its environment on a planetary scale, can we detect it remotely through its imprint on the atmosphere - the biosignatures, out of which the photosynthetic oxygen is the most prominent indicator of developed life as we know it. But the onset of photosynthesis on planets in habitable zones may take much longer time than the planetary age. The knowledge of the age of a planet is necessary for developing a strategy to search for exoplanets carrying complex (developed) life - many confirmed potentially habitable planets are too young (orbiting Population I stars) and may not have had enough time to develop and/or sustain detectable life. In the last decade, many planets orbiting old (9-13 Gyr) metal-poor Population II stars have been discovered. Such planets had had enough time to develop necessary chains of chemical reactions and may carry detectable life if located in a habitable zone. These old planets should be primary targets in search for the extraterrestrial life.

قيم البحث

اقرأ أيضاً

Habitability is a measure of an environments potential to support life, and a habitable exoplanet supports liquid water on its surface. However, a planets success in maintaining liquid water on its surface is the end result of a complex set of intera ctions between planetary, stellar, planetary system and even Galactic characteristics and processes, operating over the planets lifetime. In this chapter, we describe how we can now determine which exoplanets are most likely to be terrestrial, and the research needed to help define the habitable zone under different assumptions and planetary conditions. We then move beyond the habitable zone concept to explore a new framework that looks at far more characteristics and processes, and provide a comprehensive survey of their impacts on a planets ability to acquire and maintain habitability over time. We are now entering an exciting era of terrestiral exoplanet atmospheric characterization, where initial observations to characterize planetary composition and constrain atmospheres is already underway, with more powerful observing capabilities planned for the near and far future. Understanding the processes that affect the habitability of a planet will guide us in discovering habitable, and potentially inhabited, planets.
Habitability has been generally defined as the capability of an environment to support life. Ecologists have been using Habitat Suitability Models (HSMs) for more than four decades to study the habitability of Earth from local to global scales. Astro biologists have been proposing different habitability models for some time, with little integration and consistency among them, being different in function to those used by ecologists. Habitability models are not only used to determine if environments are habitable or not, but they also are used to characterize what key factors are responsible for the gradual transition from low to high habitability states. Here we review and compare some of the different models used by ecologists and astrobiologists and suggest how they could be integrated into new habitability standards. Such standards will help to improve the comparison and characterization of potentially habitable environments, prioritize target selections, and study correlations between habitability and biosignatures. Habitability models are the foundation of planetary habitability science and the synergy between ecologists and astrobiologists is necessary to expand our understanding of the habitability of Earth, the Solar System, and extrasolar planets.
We investigate a new class of habitable planets composed of water-rich interiors with massive oceans underlying H2-rich atmospheres, referred to here as Hycean worlds. With densities between those of rocky super-Earths and more extended mini-Neptunes , Hycean planets can be optimal candidates in the search for exoplanetary habitability and may be abundant in the exoplanet population. We investigate the bulk properties (masses, radii, and temperatures), potential for habitability, and observable biosignatures of Hycean planets. We show that Hycean planets can be significantly larger compared to previous considerations for habitable planets, with radii as large as 2.6 Earth radii (2.3 Earth radii) for a mass of 10 Earth masses (5 Earth masses). We construct the Hycean habitable zone (HZ), considering stellar hosts from late M to sun-like stars, and find it to be significantly wider than the terrestrial-like HZ. While the inner boundary of the Hycean HZ corresponds to equilibrium temperatures as high as ~500 K for late M dwarfs, the outer boundary is unrestricted to arbitrarily large orbital separations. Our investigations include tidally locked `Dark Hycean worlds that permit habitable conditions only on their permanent nightsides and `Cold Hycean worlds that see negligible irradiation. Finally, we investigate the observability of possible biosignatures in Hycean atmospheres. We find that a number of trace terrestrial biomarkers which may be expected to be present in Hycean atmospheres would be readily detectable using modest observing time with the James Webb Space Telescope (JWST). We identify a sizable sample of nearby potential Hycean planets that can be ideal targets for such observations in search of exoplanetary biosignatures.
We present a new investigation of the habitability of the Milky Way bulge, that expands previous studies on the Galactic Habitable Zone. We discuss existing knowledge on the abundance of planets in the bulge, metallicity and the possible frequency of rocky planets, orbital stability and encounters, and the possibility of planets around the central supermassive black hole. We focus on two aspects that can present substantial differences with respect to the environment in the disk: (i) the ionizing radiation environment, due to the presence of the central black hole and to the highest rate of supernovae explosions and (ii) the efficiency of putative lithopanspermia mechanism for the diffusion of life between stellar systems. We use analytical models of the star density in the bulge to provide estimates of the rate of catastrophic events and of the diffusion timescales for life over interstellar distances.
104 - M. Guedel , R. Dvorak , N. Erkaev 2014
With the discovery of hundreds of exoplanets and a potentially huge number of Earth-like planets waiting to be discovered, the conditions for their habitability have become a focal point in exoplanetary research. The classical picture of habitable zo nes primarily relies on the stellar flux allowing liquid water to exist on the surface of an Earth-like planet with a suitable atmosphere. However, numerous further stellar and planetary properties constrain habitability. Apart from geophysical processes depending on the internal structure and composition of a planet, a complex array of astrophysical factors additionally determine habitability. Among these, variable stellar UV, EUV, and X-ray radiation, stellar and interplanetary magnetic fields, ionized winds, and energetic particles control the constitution of upper planetary atmospheres and their physical and chemical evolution. Short- and long-term stellar variability necessitates full time-dependent studies to understand planetary habitability at any point in time. Furthermore, dynamical effects in planetary systems and transport of water to Earth-like planets set fundamentally important constraints. We will review these astrophysical conditions for habitability under the crucial aspects of the long-term evolution of stellar properties, the consequent extreme conditions in the early evolutionary phase of planetary systems, and the important interplay between properties of the host star and its planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا