ﻻ يوجد ملخص باللغة العربية
We prove that if a primitive and non-periodic substitution is injective on initial letters, constant on final letters, and has Pisot inflation, then the R-action on the corresponding tiling space has pure discrete spectrum. As a consequence, all beta-substitutions for beta a Pisot simple Parry number have tiling dynamical systems with pure discrete spectrum, as do the Pisot systems arising, for example, from the Jacobi-Perron and Brun continued fraction expansions.
Anderson and Putnam showed that the cohomology of a substitution tiling space may be computed by collaring tiles to obtain a substitution which forces its border. One can then represent the tiling space as an inverse limit of an inflation and substit
Identity-homotopic self-homeomorphisms of a space of non-periodic 1-dimensional tiling are generalizations of orientation-preserving self-homeomorphisms of circles. We define the analogue of rotation numbers for such maps. In constrast to the classic
If phi is a Pisot substitution of degree d, then the inflation and substitution homeomorphism Phi on the tiling space T_Phi factors via geometric realization onto a d-dimensional solenoid. Under this realization, the collection of Phi-periodic asympt
We consider metrizable ergodic topological dynamical systems over locally compact, $sigma$-compact abelian groups. We study pure point spectrum via suitable notions of almost periodicity for the points of the dynamical system. More specifically, we c
We examine the diffraction properties of lattice dynamical systems of algebraic origin. It is well-known that diverse dynamical properties occur within this class. These include different orders of mixing (or higher-order correlations), the presence