ﻻ يوجد ملخص باللغة العربية
We consider metrizable ergodic topological dynamical systems over locally compact, $sigma$-compact abelian groups. We study pure point spectrum via suitable notions of almost periodicity for the points of the dynamical system. More specifically, we characterize pure point spectrum via mean almost periodicity of generic points. We then go on and show how Besicovitch almost periodic points determine both eigenfunctions and the measure in this case. After this, we characterize those systems arising from Weyl almost periodic points and use this to characterize weak and Bohr almost periodic systems. Finally, we consider applications to aperiodic order.
We show that a translation bounded measure has pure point diffraction if and only if it is mean almost periodic. We then go on and show that a translation bounded measure solves what we call the phase problem if and only if it is Besicovitch almost p
We examine the diffraction properties of lattice dynamical systems of algebraic origin. It is well-known that diverse dynamical properties occur within this class. These include different orders of mixing (or higher-order correlations), the presence
In this paper, we introduce concepts of pathwise random almost periodic and almost automorphic solutions for dynamical systems generated by non-autonomous stochastic equations. These solutions are pathwise stochastic analogues of deterministic dynami
We investigate Weierstrass functions with roughness parameter $gamma$ that are Holder continuous with coefficient $H={loggamma}/{log frac12}.$ Analytical access is provided by an embedding into a dynamical system related to the baker transform where
The aim of this article is to obtain a better understanding and classification of strictly ergodic topological dynamical systems with discrete spectrum. To that end, we first determine when an isomorphic maximal equicontinuous factor map of a minimal