ﻻ يوجد ملخص باللغة العربية
In this paper, our recently proposed mobile-conductance based analytical framework is extended to the sparse settings, thus offering a unified tool for analyzing information spreading in mobile networks. A penalty factor is identified for information spreading in sparse networks as compared to the connected scenario, which is then intuitively interpreted and verified by simulations. With the analytical results obtained, the mobility-connectivity tradeoff is quantitatively analyzed to determine how much mobility may be exploited to make up for network connectivity deficiency.
In this paper, critical global connectivity of mobile ad hoc communication networks (MAHCN) is investigated. We model the two-dimensional plane on which nodes move randomly with a triangular lattice. Demanding the best communication of the network, w
In this paper we study mobile ad hoc wireless networks using the notion of evolving connectivity graphs. In such systems, the connectivity changes over time due to the intermittent contacts of mobile terminals. In particular, we are interested in stu
This paper studies the resilient routing and (in-band) fast failover mechanisms supported in Software-Defined Networks (SDN). We analyze the potential benefits and limitations of such failover mechanisms, and focus on two main metrics: (1) correctnes
Network softwarization triggered a new wave of innovation in modern network design. The next generation of mobile networks embraces this trend. Mobile-edge computing (MEC) is a key part of emerging mobile networks that enables ultra-low latency missi
The exponential growth of the number of multihomed mobile devices is changing the way how we can connect to the Internet. Our mobile devices are demanding for more network resources, in terms of traffic volume and QoS requirements. Unfortunately, it