ﻻ يوجد ملخص باللغة العربية
We consider the holographic Friedman-Robertson-Walker (hFRW) universe on the 4-dimensional membrane embedded in the 5-dimensional bulk spacetime and fit the parameters with the observational data. In order to fully account for the phenomenology of this scenario, we consider the models with the brane cosmological constant and the negative bulk cosmological constant. The contribution from the bulk is represented as the holographic dark fluid on the membrane. We derive the universal modified Friedmann equation by including all of these effects in both braneworld and holographic cutoff approaches. For three specific models, namely, the pure hFRW model, the one with the brane cosmological constant, and the one with the negative bulk cosmological constant, we compare the model predictions with the observations. The parameters in the considered hFRW models are constrained with observational data. In particular, it is shown that the model with the brane cosmological constant can fit data as well as the standard $Lambda$CDM universe. We also find that the $sigma_8$ tension observed in different large-structure experiments can be effectively relaxed in this holographic scenario.
By incorporating quantum aspects of gravity, Loop Quantum Cosmology (LQC) provides a self-consistent extension of the inflationary scenario, allowing for modifications in the primordial inflationary power spectrum with respect to the standard General
A novel fractal structure for the cosmological horizon, inspired by COVID-19 geometry, which results in a modified area entropy, is applied to cosmology in order to serve dark energy. The constraints based on a complete set of observational data are
We perform a combined perturbation and observational investigation of the scenario of non-minimal derivative coupling between a scalar field and curvature. First we extract the necessary condition that ensures the absence of instabilities, which is f
The DGP brane-world model provides a simple alternative to the standard LCDM cosmology, with the same number of parameters. There is no dark energy - the late universe self-accelerates due to an infrared modification of gravity. We compute the joint
The early dark energy (EDE) scenario aims to increase the value of the Hubble constant ($H_0$) inferred from cosmic microwave background (CMB) data over that found in $Lambda$CDM, via the introduction of a new form of energy density in the early univ