ترغب بنشر مسار تعليمي؟ اضغط هنا

A toolkit for semiclassical computations for strongly-driven molecules: frustrated ionization of H$_{2}$ driven by elliptical laser fields

383   0   0.0 ( 0 )
 نشر من قبل Constantinos Lazarou Dr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the formation of highly excited neutral atoms during the break-up of strongly-driven molecules. Past work on this significant phenomenon has shown that during the formation of highly excited neutral atoms ($mathrm{H^{*}}$) during the break-up of H$_{2}$ in a linear laser field the electron that escapes does so either very quickly or after remaining bound for a few periods of the laser field. Here, we address the electron-nuclear dynamics in $mathrm{H^{*}}$ formation in elliptical laser fields, through Coulomb explosion. We show that with increasing ellipticity two-electron effects are effectively switched-off. We perform these studies using a toolkit we have developed for semiclassical computations for strongly-driven multi-center molecules. This toolkit includes the formulation of the probabilities of strong-field phenomena in a transparent way. This allows us to identify the shortcomings of currently used initial phase space distributions for the electronic degrees of freedom. In addition, it includes a 3-dimensional method for time-propagation that fully accounts for the Coulomb singularity. This technique has been previously developed in the context of celestial mechanics and we currently adopt it to strongly-driven systems. Moreover, we allow for tunneling during the time-propagation. We find that this is necessary in order to accurately describe the fragmentation of strongly-driven molecules.

قيم البحث

اقرأ أيضاً

We study the generation of terahertz radiation from atoms and molecules driven by an ultrashort fundamental laser and its second harmonic field by solving time-dependent Schrodinger equation (TDSE). The comparisons between one-, two-, and three- dime nsional TDSE numerical simulations show that initial ionized wave-packet and its subsequent acceleration in the laser field and rescattering with long-range Coulomb potential play key roles. We also present the dependence of the optimum phase delay and yield of terahertz radiation on the laser intensity, wavelength, duration, and the ratio of two-color laser components. Terahertz wave generation from model hydrogen molecules are further investigated by comparing with high harmonic emission. It is found that the terahertz yield is following the alignment dependence of ionization rate, while the optimal two-color phase delays varies by a small amount when the alignment angle changes from 0 to 90 degrees, which reflects alignment dependence of attosecond electron dynamics. Finally we show that terahertz emission might be used to clarify the origin of interference in high harmonic generation from aligned molecules by coincidently measuring the angle-resolved THz yields.
367 - J. Dubois , C. Chandre , T. Uzer 2020
We study the double ionization of atoms subjected to circularly polarized (CP) laser pulses. We analyze two fundamental ionization processes: the sequential (SDI) and non-sequential (NSDI) double ionization in the light of the rotating frame (RF) whi ch naturally embeds nonadiabatic effects in CP pulses. We use and compare two adiabatic approximations: The adiabatic approximation in the laboratory frame (LF) and the adiabatic approximation in the RF. The adiabatic approximation in the RF encapsulates the energy variations of the electrons on subcycle timescales happening in the LF and this, by fully taking into account the ion-electron interaction. This allows us to identify two nonadiabatic effects including the lowering of the threshold intensity at which over-the-barrier ionization happens and the lowering of the ionization time of the electrons. As a consequence, these nonadiabatic effects facilitate over-the-barrier ionization and recollision-induced ionizations. We analyze the outcomes of these nonadiabatic effects on the recollision mechanism. We show that the laser envelope plays an instrumental role in a recollision channel in CP pulses at the heart of NSDI.
We present a theoretical quasiclassical study of the formation, during Coulomb explosion, of two highly excited neutral H atoms (double H$^{*}$) of strongly driven H$_2$. In this process, after the laser field is turned off each electron occupies a R ydberg state of an H atom. We show that two-electron effects are important in order to correctly account for double H$^{*}$ formation. We find that the route to forming two H$^{*}$ atoms is similar to pathway B that was identified in Phys. Rev. A {bf 85} 011402 (R) as one of the two routes leading to single H$^{*}$ formation. However, instead of one ionization step being frustrated as is the case for pathway B, both ionization steps are frustrated in double H$^{*}$ formation. Moreover, we compute the screened nuclear charge that drives the explosion of the nuclei during double H$^{*}$ formation.
We study ionization dynamics of aligned diatomic molecules N$_2$ in strong elliptical laser fields experimentally and theoretically. The alignment dependence of photoelectron momentum distributions (PMDs) of N$_2$ measured in experiments is highlight ed with comparing to Ar measured synchronously. Our results show that the PMDs of N$_2$ depend strongly on the alignment of the molecule, relative to the main axis of the laser ellipse. In particular, the most-probable electron-emission angle which is often used in attosecond measurement, differs remarkably when changing the molecular alignment. We show that the interplay of two-center interference and tunneling when the electron goes through the laser-Coulomb-formed barrier, plays an important role in these phenomena. Our work gives suggestions on studying ultrafast electron motion inside aligned molecules.
We study double ionization of Mg by electron impact through the vantage point of classical mechanics. We consider all electron-electron correlations in a Coulomb four-body problem, where three electrons belong to the atom and the fourth electron caus es the impact ionization. From our model we compute the double-ionization probability of Mg for impact energies from 15, to 125 eV. Double ionization occurs through eight double-ionization mechanisms, which we classify into four categories: inner shell capture, direct, delay and ionized inner shell mechanisms. We show that delay and ionized inner shell mechanisms require electron-electron correlations among the four electrons, and are responsible for the second increase in the double-ionization probability. Furthermore, we show that our theoretical prediction about the relative prominence of certain double ionization mechanisms is in agreement with experimental results on the relative prominence of non-first- over first-order mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا