ﻻ يوجد ملخص باللغة العربية
Relatively little is known about the dynamics of electron transfer reactions at low collision energy. We present a study of Penning ionization of ground state methyl fluoride molecules by electronically excited neon atoms in the 13 $mu$eV--4.8 meV (150 mK--56 K) collision energy range, using a neutral-neutral merged beam setup. Relative cross sections have been measured for three Ne($^3P_2$)+ CH$_3$F reaction channels by counting the number of CH$_3$F$^+$, CH$_2$F$^+$, and CH$_3^+$ product ions, as a function of relative velocity between the neon and methyl fluoride molecular beams. Experimental cross sections markedly deviate from the Langevin capture model at collision energies above 20 K. The branching ratios are constant. In other words, the chemical shape of the CH$_3$F molecule, as seen by Ne($^3P_2$) atom, appears not to change as the collision energy is varied, in contrast to related Ne($^3P_J$) + CH$_3$X (X=Cl and Br) reactions at higher collision energies.
Angular momentum changing collisions can be suppressed in atoms whose valence electrons are submerged beneath filled shells of higher principle quantum number. To determine whether spin-exchange collisions are suppressed in these submerged shell atom
We have used two types of thermometry to study thermal fluctuations in a microcantilever-based system below 1 K. We measured the temperature of a cantilevers macroscopic degree-of-freedom (via the Brownian motion of its lowest flexural mode) and its
We investigate photoinduced proton-coupled electron transfer (PI-PCET) reaction through a recently devel- oped quasi-diabatic (QD) quantum dynamics propagation scheme. This scheme enables interfacing accurate diabatic-based quantum dynamics approache
We explore spin dynamics of isotopically purified $^{166}$Er:$^{7}$LiYF$_4$ crystal below 1 Kelvin and at weak magnetic fields $<$0.3 T. Crystals grown in our lab demonstrate record-narrow inhomogeneous optical broadening down to 16~MHz. Solid state
The H + D_2^+(v=0,1 and 2) charge transfer reaction is studied using an accurate wave packet method, using recently proposed coupled diabatic potential energy surfaces. The state-to-state cross section is obtained for three different channels: non-re