ﻻ يوجد ملخص باللغة العربية
Angular momentum changing collisions can be suppressed in atoms whose valence electrons are submerged beneath filled shells of higher principle quantum number. To determine whether spin-exchange collisions are suppressed in these submerged shell atoms, we measured spin-exchange collisions of six hyperfine states of Mn at temperatures below 1 K. Although the 3d valence electrons in Mn are submerged beneath a filled 4s orbital, we find that the spin exchange rate coefficients are similar to those of Na and H (which are non-submerged shell atoms).
Spin relaxation due to atom-atom collisions is measured for magnetically trapped erbium and thulium atoms at a temperature near 500 mK. The rate constants for Er-Er and Tm-Tm collisions are 3.0 times 10^-10 cm^3 s^-1 and 1.1 times 10^-10 cm^3 s^-1, r
We present calculations of spin-relaxation rates of alkali-metal atoms due to the spin-axis interaction acting in binary collisions between the atoms. We show that for the high-temperature conditions of interest here, the spin relaxation rates calcul
We study the interactions between oscillating non-resonant rf fields and atoms with strong spin-exchange collisions in the presence of a weak dc magnetic field. We find that the atomic Larmor precession frequency shows a new functional form to the rf
We report direct observations of photon-mediated spin-exchange interactions in an atomic ensemble. Interactions extending over a distance of 500 microns are generated within a cloud of cold rubidium atoms coupled to a single mode of light in an optic
A generalized ADK (Ammosov-Delone-Krainov) theory for ionization of open shell atoms is compared to ionization experiments performed on the transition metal atoms V, Ni, Pd, Ta, and Nb. Our theory is found to be in good agreement for V, Ni, Pd, and T