ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessments of the energy, mass and size of the Chicxulub Impactor

120   0   0.0 ( 0 )
 نشر من قبل Hector Javier Durand-Manterola
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In 1980, Alvarez and colleagues proposed that, in the transition from the Cretaceous to Paleogene, a large impactor collided with Earth being the cause of the mass extinction occurred at the limit K / Pg. In 1980 there was no known impact structure, which could be responsible for this extinction. It was not until 1991 that an international group of researchers proposed that a circular structure between 180 and 200 km, buried under Tertiary deposits in the Yucatan Peninsula in Mexico, was the crater formed by the impact proposed by the group of Alvarez (Hildebrand et al., 1991). It is very probable that an impact of this magnitude have had large effects on the surface and in the environment. To study these effects, it is necessary to estimate the characteristics that the impactor had. The literature often mentions the nature of the impactor, and has been proposed both an asteroid and a comet, and even a comet shower that produced periodic extinctions. However, the physical parameters of the impactor are not limited, so the aim of this study is to estimate the most relevant features of this one such as the size, mass and kinetic energy. We found that the kinetic energy of the impactor is in the range from 1.3e24 J to 5.8e25 J. The mass is in the range of 1.0e15 kg to 4.6e17 kg. Finally, the diameter of the object is in the range of 10.6 km to 80.9 km. Based on the mass of the impactor and iridium abundance in different types of meteorites, we calculate the concentration of iridium, which should be observed in the K/Pg layer. When compared with the measurements, we concluded that the best estimation is that the impactor was a comet.



قيم البحث

اقرأ أيضاً

Overabundances in highly siderophile elements (HSEs) of Earths mantle can be explained by conveyance from a singular, immense (3000 km in a diameter) Late Veneer impactor of chondritic composition, subsequent to lunar formation and terrestrial core-c losure. Such rocky objects of approximately lunar mass (about 0.01 M_E) ought to be differentiated, such that nearly all of their HSE payload is sequestered into iron cores. Here, we analyze the mechanical and chemical fate of the core of such a Late Veneer impactor, and trace how its HSEs are suspended - and thus pollute - the mantle. For the statistically most-likely oblique collision (about 45degree), the impactors core elongates and thereafter disintegrates into a metallic hail of small particles (about 10 m). Some strike the orbiting Moon as sesquinary impactors, but most re-accrete to Earth as secondaries with further fragmentation. We show that a single oblique impactor provides an adequate amount of HSEs to the primordial terrestrial silicate reservoirs via oxidation of (<m-sized) metal particles with a hydrous, pre-impact, early Hadean Earth.
Metallic bodies that were the cores of differentiated bodies are sources of iron meteorites and are considered to have formed early in the terrestrial planet region before migrating to the main asteroid belt. Surface temperatures and mutual collision velocities differ between the terrestrial planet region and the main asteroid belt. To investigate the dependence of crater shape on temperature, velocity and impactor density, we conducted impact experiments on room- and low-temperature iron meteorite and iron alloy targets (carbon steel SS400 and iron-nickel alloy) with velocities of 0.8-7 km/s. The projectiles were rock cylinders and metal spheres and cylinders. Oblique impact experiments were also conducted using stainless steel projectiles and SS400 steel targets which produced more prominent radial patterns downrange at room temperature than at low temperature. Crater diameters and depths were measured and compiled using non-dimensional parameter sets based on the $pi$-group crater scaling relations. Two-dimensional numerical simulations were conducted using iSALE-2D code with the Johnson-Cook strength model. Both experimental and numerical results showed that the crater depth and diameter decreased with decreasing temperature, which strengthened the target, and with decreasing impact velocity. The decreasing tendency was more prominent for depth than for diameter, i.e., the depth/diameter ratio was smaller for the low temperature and low velocity conditions. The depth/diameter ratios of craters formed by rock projectiles were shallower than those of craters formed by metallic projectiles. Our results imply that the frequency distribution of the depth/diameter ratio for craters on the surface of metallic bodies may be used as a probe of the past impact environment of metallic bodies.
As a consequence of the large (and growing) number of near-Earth objects discovered, some of them are lost before their orbit can be firmly established to ensure long-term recovery. A fraction of these present non-negligible chances of impact with th e Earth. We present a method of targeted observations that allowed us to eliminate that risk by obtaining deep images of the area where the object would be, should it be on a collision orbit. 2006 QV89 was one of these objects, with a chance of impact with the Earth on 2019 September 9. Its position uncertainty (of the order of 1 degree) and faintness (below V$sim$24) made it a difficult candidate for a traditional direct recovery. However, the position of the virtual impactors could be determined with excellent accuracy. In July 2019, the virtual impactors of 2006 QV89 were particularly well placed, with a very small uncertainty region, and an expected magnitude of V$<$26. The area was imaged using ESOs Very Large Telescope, in the context of the ESA/ESO collaboration on Near-Earth Objects, resulting in very constraining a non-detection. This resulted in the elimination of the virtual impactor, even without effectively recovering 2006 QV89, indicating that it did not represent a threat. This method of deep non-detection of virtual impactors demonstrated a large potential to eliminate the threat of other-wise difficult to recover near-Earth objects
We aim to estimate if structures, such as cavities, rings, and gaps, are common in disks around VLMS and to test models of structure formation in these disks. We also aim to compare the radial extent of the gas and dust emission in disks around VLMS, which can give us insight about radial drift. We studied six disks around VLMS in the Taurus star-forming region using ALMA Band 7 ($sim 340,$GHz) at a resolution of $sim0.1$. The targets were selected because of their high disk dust content in their stellar mass regime. Our observations resolve the disk dust continuum in all disks. In addition, we detect the $^{12}$CO ($J=3-2$) emission line in all targets and $^{13}$CO ($J=3-2$) in five of the six sources. The angular resolution allows the detection of dust substructures in three out of the six disks, which we studied by using UV-modeling. Central cavities are observed in the disks around stars MHO,6 (M5.0) and CIDA,1 (M4.5), while we have a tentative detection of a multi-ringed disk around J0433. Single planets of masses $0.1sim0.4,M_{rm{Jup}}$ would be required. The other three disks with no observed structures are the most compact and faintest in our sample. The emission of $^{12}$CO and $^{13}$CO is more extended than the dust continuum emission in all disks of our sample. When using the $^{12}$CO emission to determine the gas disk extension $R_{rm{gas}}$, the ratio of $R_{rm{gas}}/R_{rm{dust}}$ in our sample varies from 2.3 to 6.0, which is consistent with models of radial drift being very efficient around VLMS in the absence of substructures. Our observations do not exclude giant planet formation on the substructures observed. A comparison of the size and luminosity of VLMS disks with their counterparts around higher mass stars shows that they follow a similar relation.
90 - Futoshi Minato 2018
Incident neutron energy dependence of delayed neutron yields of uranium and plutonium isotopes is investigated. A summation calculation of decay and fission yield data is employed, and the energy dependence of the latter part is considered in a pheno menological way. Our calculation systematically reproduces the energy dependence of delayed neutron yields by introducing an energy dependence of the most probable charge and the odd-even effect. The calculated fission yields are assessed by comparison with JENDL/FPY-2011, delayed neutron activities, and decay heats. Although the fission yields in this work are optimized to delayed neutron yields, the calculated decay heats are in good agreement with the experimental data. Comparison of the fission yields calculated in this work and JENDL/FPY-2011 gave an important insight for the evaluation of the next JENDL nuclear data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا