ﻻ يوجد ملخص باللغة العربية
We look at the long-time behaviour of solutions to a semi-classical Schrodinger equation on the torus. We consider time scales which go to infinity when the semi-classical parameter goes to zero and we associate with each time-scale the set of semi-classical measures associated with all possible choices of initial data. On each classical invariant torus, the structure of semi-classical measures is described in terms of two-microlocal measures, obeying explicit propagation laws. We apply this construction in two directions. We first analyse the regularity of semi-classical measures, and we emphasize the existence of a threshold : for time-scales below this threshold, the set of semi-classical measures contains measures which are singular with respect to Lebesgue measure in the position variable, while at (and beyond) the threshold, all the semi-classical measures are absolutely continuous in the position variable, reflecting the dispersive properties of the equation. Second, the techniques of two- microlocal analysis introduced in the paper are used to prove semiclassical observability estimates. The results apply as well to general quantum completely integrable systems.
We develop a second-microlocal calculus of pseudodifferential operators in the semiclassical setting. These operators test for Lagrangian regularity of semiclassical families of distributions on a manifold $X$ with respect to a Lagrangian submanifold
In this survey, our aim is to emphasize the main known limitations to the use of Wigner measures for Schrodinger equations. After a short review of successful applications of Wigner measures to study the semi-classical limit of solutions to Schroding
We consider discrete analogues of two well-known open problems regarding invariant measures for dispersive PDE, namely, the invariance of the Gibbs measure for the continuum (classical) Heisenberg model and the invariance of white noise under focusin
One dimensional systems sometimes show pathologically slow decay of currents. This robustness can be traced to the fact that an integrable model is nearby in parameter space. In integrable models some part of the current can be conserved, explaining
In this paper we outline the construction of semiclassical eigenfunctions of integrable models in terms of the semiclassical path integral for the Poisson sigma model with the target space being the phase space of the integrable system. The semiclass