ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of Chemical Freeze-out Parameters from Net-kaon Fluctuations at RHIC

72   0   0.0 ( 0 )
 نشر من قبل Jamie M. Stafford
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the mean-over-variance ratio of the net-kaon fluctuations in the Hadron Resonance Gas (HRG) Model for the five highest energies of the RHIC Beam Energy Scan (BES) for different particle data lists. We compare these results with the latest experimental data from the STAR collaboration in order to extract sets of chemical freeze-out parameters for each list. We focused on the PDG2012 and PDG2016+ particle lists, which differ largely in the number of resonant states. Our analysis determines the effect of the amount of resonances included in the HRG on the freeze-out conditions.

قيم البحث

اقرأ أيضاً

We study chemical freeze-out parameters for heavy-ion collisions by performing two different thermal analyses. We analyze results from thermal fits for particle yields, as well as, net-charge fluctuations in order to characterize the chemical freeze- out. The Hadron Resonance Gas (HRG) model is employed for both methods. By separating the light hadrons from the strange hadrons in thermal fits, we study the proposed flavor hierarchy. For the net-charge fluctuations, we calculate the mean-over-variance ratio of the net-kaon fluctuations in the HRG model at the five highest energies of the RHIC Beam Energy Scan (BES) for different particle data lists. We compare these results with recent experimental data from the STAR collaboration in order to extract sets of chemical freeze-out parameters for each list. We focused on particle lists which differ largely in the number of resonant states. By doing so, our analysis determines the effect of the amount of resonances included in the HRG model on the freeze-out conditions. Our findings have potential impact on various other models in the field of relativistic heavy-ion collisions.
70 - L.V. Bravina 2001
The relaxation of hot nuclear matter to an equilibrated state in the central zone of heavy-ion collisions at energies from AGS to RHIC is studied within the microscopic UrQMD model. It is found that the system reaches the (quasi)equilibrium stage for the period of 10-15 fm/$c$. Within this time the matter in the cell expands nearly isentropically with the entropy to baryon ratio $S/A = 150 - 170$. Thermodynamic characteristics of the system at AGS and at SPS energies at the endpoints of this stage are very close to the parameters of chemical and thermal freeze-out extracted from the thermal fit to experimental data. Predictions are made for the full RHIC energy $sqrt{s} = 200$ AGeV. The formation of a resonance-rich state at RHIC energies is discussed.
The chemical freeze-out of hadrons created in the high energy nuclear collisions is studied within the realistic version of the hadron resonance gas model. The chemical non-equilibrium of strange particles is accounted via the usual $gamma_{s}$ facto r which gives us an opportunity to perform a high quality fit with $chi^2/dof simeq 63.5/55 simeq 1.15$ of the hadronic multiplicity ratios measured from the low AGS to the highest RHIC energies. In contrast to previous findings, at low energies we observe the strangeness enhancement instead of a suppression. In addition, the performed $gamma_{s}$ fit allows us to achieve the highest quality of the Strangeness Horn description with $chi^2/dof=3.3/14$. For the first time the top point of the Strangeness Horn is perfectly reproduced, which makes our theoretical horn as sharp as an experimental one. However, the $gamma_{s}$ fit approach does not sizably improve the description of the multi-strange baryons and antibaryons. Therefore, an apparent deviation of multi-strange baryons and antibaryons from chemical equilibrium requires further explanation.
Measurements of three-dimensional correlation functions of like-sign low transverse momentum kaon pairs from Au+Au collisions at top RHIC energy $sqrt s_{NN}$=200 GeV are presented. The extracted kaon source function is narrower than the pion one and does not have the long tail along the pair transverse momentum direction. This indicates a much smaller role of long-lived resonance decays and/or of the emission duration on kaon emission. Three-dimensional Gaussian shape of the kaon source function can be adequately reproduced by Therminator simulations with resonance contributions taken into account. Comparison to pion data at the same energy reveals that the kaon Gaussian radii in the outward and sideward directions scale with the transverse mass $m_T$. In the longitudinal direction, unlike at lower SPS energies, the Gaussian radii do not seem to follow the exact $m_T$ scaling between kaons and pions.
113 - A. Tawfik 2013
We calculate the non-normalized moments of the particle multiplicity within the framework of the hadron resonance gas (HRG) model. At finite chemical potential $mu$, a non-monotonic behavior is observed in the thermal evolution of third order moment (skewness $S$) and the higher order ones as well. Among others, this observation likely reflects dynamical fluctuations and strong correlations. The signatures of non-monotonicity in the normalized fourth order moment (kurtosis $kappa$) and its products get very clear. Based on these findings, we introduce a novel condition characterizing the universal freeze-out curve. The chemical freeze-out parameters $T$ and $mu$ are described by vanishing $kappa, sigma^2$ or equivalently $m_4=3,chi^2$, where $sigma$, $chi$ and $m_4$ are the standard deviation, susceptibility and fourth order moment, respectively. The fact that the HRG model is not able to release information about criticality related to the confinement and chiral dynamics should not veil the observations related to the chemical freeze-out. Recent lattice QCD studies strongly advocate the main conclusion of the present paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا