ﻻ يوجد ملخص باللغة العربية
This paper addresses sensitivity analysis for dynamic models, linking dependent inputs to observed outputs. The usual method to estimate Sobol indices are based on the independence of input variables. We present a method to overpass this constraint when inputs are Gaussian processes of high dimension in a time related framework. Our proposition leads to a generalization of Sobol indices when inputs are both dependant and dynamic. The method of estimation is a modification of the Pick and Freeze simulation scheme. First we study the general Gaussian cases and secondly we detail the case of stationary models. We then apply the results to an example of heat exchanges inside a building.
The hierarchically orthogonal functional decomposition of any measurable function f of a random vector X=(X_1,...,X_p) consists in decomposing f(X) into a sum of increasing dimension functions depending only on a subvector of X. Even when X_1,..., X_
Uncertainties exist in both physics-based and data-driven models. Variance-based sensitivity analysis characterizes how the variance of a model output is propagated from the model inputs. The Sobol index is one of the most widely used sensitivity ind
The global sensitivity analysis of a complex numerical model often calls for the estimation of variance-based importance measures, named Sobol indices. Metamodel-based techniques have been developed in order to replace the cpu time-expensive computer
This paper studies identification and estimation of a class of dynamic models in which the decision maker (DM) is uncertain about the data-generating process. The DM surrounds a benchmark model that he or she fears is misspecified by a set of models.
This paper proposes a joint input and state dynamic estimation scheme for power networks in microgrids and active distribution systems with unknown inputs. The conventional dynamic state estimation of power networks in the transmission system relies