ﻻ يوجد ملخص باللغة العربية
The hierarchically orthogonal functional decomposition of any measurable function f of a random vector X=(X_1,...,X_p) consists in decomposing f(X) into a sum of increasing dimension functions depending only on a subvector of X. Even when X_1,..., X_p are assumed to be dependent, this decomposition is unique if components are hierarchically orthogonal. That is, two of the components are orthogonal whenever all the variables involved in one of the summands are a subset of the variables involved in the other. Setting Y=f(X), this decomposition leads to the definition of generalized sensitivity indices able to quantify the uncertainty of Y with respect to the dependent inputs X. In this paper, a numerical method is developed to identify the component functions of the decomposition using the hierarchical orthogonality property. Furthermore, the asymptotic properties of the components estimation is studied, as well as the numerical estimation of the generalized sensitivity indices of a toy model. Lastly, the method is applied to a model arising from a real-world problem.
The so-called polynomial chaos expansion is widely used in computer experiments. For example, it is a powerful tool to estimate Sobol sensitivity indices. In this paper, we consider generalized chaos expansions built on general tensor Hilbert basis.
This paper addresses sensitivity analysis for dynamic models, linking dependent inputs to observed outputs. The usual method to estimate Sobol indices are based on the independence of input variables. We present a method to overpass this constraint w
Uncertainties exist in both physics-based and data-driven models. Variance-based sensitivity analysis characterizes how the variance of a model output is propagated from the model inputs. The Sobol index is one of the most widely used sensitivity ind
In the context of computer code experiments, sensitivity analysis of a complicated input-output system is often performed by ranking the so-called Sobol indices. One reason of the popularity of Sobols approach relies on the simplicity of the statisti
A proper set of indices characterizing the polarimetric purity of light and material media is defined from the eigenvalues of the corresponding coherency matrix. A simple and generalizable relation of these indices with the current parameters charact