ﻻ يوجد ملخص باللغة العربية
Econophysics and econometrics agree that there is a correlation between volume and volatility in a time series. Using empirical data and their distributions, we further investigate this correlation and discover new ways that volatility and volume interact, particularly when the levels of both are high. We find that the distribution of the volume-conditional volatility is well fit by a power-law function with an exponential cutoff. We find that the volume-conditional volatility distribution scales with volume, and collapses these distributions to a single curve. We exploit the characteristics of the volume-volatility scatter plot to find a strong correlation between logarithmic volume and a quantity we define as local maximum volatility (LMV), which indicates the largest volatility observed in a given range of trading volumes. This finding supports our empirical analysis showing that volume is an excellent predictor of the maximum value of volatility for both same-day and near-future time periods. We also use a joint conditional probability that includes both volatility and volume to demonstrate that invoking both allows us to better predict the largest next-day volatility than invoking either one alone.
In informationally efficient financial markets, option prices and this implied volatility should immediately be adjusted to new information that arrives along with a jump in underlyings return, whereas gradual changes in implied volatility would indi
We study the price dynamics of 65 stocks from the Dow Jones Composite Average from 1973 until 2014. We show that it is possible to define a Daily Market Volatility $sigma(t)$ which is directly observable from data. This quantity is usually indirectly
Bid-ask spread is taken as an important measure of the financial market liquidity. In this article, we study the dynamics of the spread return and the spread volatility of four liquid stocks in the Chinese stock market, including the memory effect an
This paper presents probability distributions for price and returns random processes for averaging time interval {Delta}. These probabilities determine properties of price and returns volatility. We define statistical moments for price and returns ra
We investigate scaling and memory effects in return intervals between price volatilities above a certain threshold $q$ for the Japanese stock market using daily and intraday data sets. We find that the distribution of return intervals can be approxim