ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic order in the frustrated Ising-like chain compound Sr$_3$NiIrO$_6$

122   0   0.0 ( 0 )
 نشر من قبل Emilie Lefrancois
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the field and temperature dependence of the magnetization of single crystals of Sr3NiIrO6. These measurements evidence the presence of an easy axis of anisotropy and two anomalies in the magnetic susceptibility. Neutron powder diffraction realized on a polycrystalline sample reveals the emergence of magnetic reflections below 75 K with magnetic propagation vector k ~ (0, 0, 1), undetected in previous neutron studies [T.N. Nguyen and H.-C zur Loye, J. Solid State Chem., 117, 300 (1995)]. The nature of the magnetic ground state, and the presence of two anomalies common to this family of material, are discussed on the basis of the results obtained by neutron diffraction, magnetization measurements, and symmetry arguments.



قيم البحث

اقرأ أيضاً

We have measured extremely large coercive magnetic fields of up to 55~T in Sr$_3$NiIrO$_6$, with a switched magnetic moment $approx 0.8~mu_{rm B}$ per formula unit. As far as we are aware, this is the largest coercive field observed thus far. This ex traordinarily hard magnetism has a completely different origin from that found in conventional ferromagnets. Instead, it is due to the evolution of a frustrated antiferromagnetic state in the presence of strong magnetocrystalline anisotropy due to the overlap of spatially-extended Ir$^{4+}$ 5$d$ orbitals with oxygen 2$p$ and Ni$^{2+}$ 3$d$ orbitals. This work highlights the unusual physics that can result from combining the extended $5d$ orbitals in Ir$^{4+}$ with the frustrated behaviour of triangular lattice antiferromagnets.
We report the signatures of dynamic spin fluctuations in the layered honeycomb Li$_3$Cu$_2$SbO$_6$ compound, with a 3$d$ S = 1/2 $d^9$ Cu$^{2+}$ configuration, through muon spin rotation and relaxation ($mu$SR) and neutron scattering studies. Our zer o-field (ZF) and longitudinal-field (LF)-$mu$SR results demonstrate the slowing down of the Cu$^{2+}$ spin fluctuations below 4.0 K. The saturation of the ZF relaxation rate at low temperature, together with its weak dependence on the longitudinal field between 0 and 3.2 kG, indicates the presence of dynamic spin fluctuations persisting even at 80 mK without static order. Neutron scattering study reveals the gaped magnetic excitations with three modes at 7.7, 13.5 and 33 meV. Our DFT calculations reveal that the next nearest neighbors (NNN) AFM exchange ($J_{AFM}$ = 31 meV) is stronger than the NN FM exchange ($J_{FM}$ = -21 meV) indicating the importance of the orbital degrees of freedom. Our results suggest that the physics of Li$_3$Cu$_2$SbO$_6$ can be explained by an alternating AFM chain rather than the honeycomb lattice.
79 - Asad Niazi 2001
Ac and dc magnetization and heat-capacity (C) measurements performed on the pseudo-one-dimensional compound Sr$_3$CuIrO$_6$ reveal a competition between antiferromagnetic (AF) and ferromagnetic (F) exchange couplings, as evidenced by frequency depend ence of ac susceptibility and by the absence of a C anomaly at the magnetic transition. The value of the saturation moment (about 0.35 $mu_B$/formula unit) is much smaller than expected for ferromagnetism from the two S=1/2 ions (Cu and Ir). Thus, this compound is not a ferromagnet in zero magnetic field, in contrast to earlier beliefs. Of particular importance is the finding that the value of the magnetic ordering temperature is sample dependent, sensitive to synthetic conditions resulting from deviations in oxygen/Cu content. We propose that this compound serves as a unique model system to test theories on random AF-F interaction in a chain system, considering that this competition can be tuned without any chemical substitution.
112 - Asad Niazi 2001
We report the results of ac and dc magnetization (M) and heat-capacity (C) measurements on the solid solution, Sr$_3$Cu$_{1-x}$Zn$_x$IrO$_6$. While the Zn end member is known to form in a rhombohedral pseudo one-dimensional K$_4$CdCl$_6$ structure wi th an antiferromagnetic ordering temperature of (T$_N$ =) 19 K, the Cu end member has been reported to form in a monoclinically distorted form with a Curie temperature of (T$_C$ =) 19 K. The magnetism of the Zn compound is found to be robust to synthetic conditions and is broadly consistent with the behavior known in the literature. However, we find a lower magnetic ordering temperature (T$_o$) for our Cu compound (~ 13 K), thereby suggesting that T$_o$ is sensitive to synthetic conditions. The Cu sample appears to be in a spin-glass-like state at low temperatures, judged by a frequency dependence of ac magnetic susceptibility and a broadening of the C anomaly at the onset of magnetic ordering, in sharp contrast to earlier proposals. Small applications of magnetic field, however, drive this system to ferromagnetism as inferred from the M data. Small substitutions for Cu/Zn (x = 0.75 or 0.25) significantly depress magnetic ordering; in other words, T$_o$ varies non-monotonically with x (T$_o$ ~ 6, 3 and 4 K for x = 0.25, 0.5, and 0.67 respectively). The plot of inverse susceptibility versus temperature is non-linear in the paramagnetic state as if correlations within (or among) the magnetic chains continuously vary with temperature. The results establish
We have investigated the magnetic behavior of the nano crystals, synthesized by high-energy ball-milling, for a well-known geometrically frustrated spin-chain system, Ca3CoRhO6, and compared its magnetic characteristics with those of the bulk form by measuring ac and dc magnetization. The features attributable to the onset of partially disordered antiferromagnetism (characterizing the bulk form) are not seen in the magnetization data of the nano particles; the magnetic moment at high fields in the very low temperature range in the magnetically ordered state gets relatively enhanced in the nano particles. It appears that the ferromagnetic intrachain interaction, judged by the sign of the paramagnetic Curie temperature, is preserved in the nano particles. These trends are opposite to those seen in Ca3Co2O6. However, the complex spin-dynamics as evidenced by large frequency dependence of ac susceptibility is retained in the nano particles as well. Thus, there are some similarities and dissimilarities between the properties of the nano particles and those of the bulk. We believe that these findings would be useful to understand correlation lengths deciding various properties of geometrical frustration and/or spin-chain phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا