ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Network Generation Under General Preferential Attachment

347   0   0.0 ( 0 )
 نشر من قبل James Atwood
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Preferential attachment (PA) models of network structure are widely used due to their explanatory power and conceptual simplicity. PA models are able to account for the scale-free degree distributions observed in many real-world large networks through the remarkably simple mechanism of sequentially introducing nodes that attach preferentially to high-degree nodes. The ability to efficiently generate instances from PA models is a key asset in understanding both the models themselves and the real networks that they represent. Surprisingly, little attention has been paid to the problem of efficient instance generation. In this paper, we show that the complexity of generating network instances from a PA model depends on the preference function of the model, provide efficient data structures that work under any preference function, and present empirical results from an implementation based on these data structures. We demonstrate that, by indexing growing networks with a simple augmented heap, we can implement a network generator which scales many orders of magnitude beyond existing capabilities ($10^6$ -- $10^8$ nodes). We show the utility of an efficient and general PA network generator by investigating the consequences of varying the preference functions of an existing model. We also provide quicknet, a freely-available open-source implementation of the methods described in this work.

قيم البحث

اقرأ أيضاً

341 - Yasuhiro Hashimoto 2015
In the Yule-Simon process, selection of words follows the preferential attachment mechanism, resulting in the power-law growth in the cumulative number of individual word occurrences. This is derived using mean-field approximation, assuming a continu um limit of both the time and number of word occurrences. However, time and word occurrences are inherently discrete in the process, and it is natural to assume that the cumulative number of word occurrences has a certain fluctuation around the average behavior predicted by the mean-field approximation. We derive the exact and approximate forms of the probability distribution of such fluctuation analytically and confirm that those probability distributions are well supported by the numerical experiments.
Preferential attachment models are a common class of graph models which have been used to explain why power-law distributions appear in the degree sequences of real network data. One of the things they lack, however, is higher-order network clusterin g, including non-trivial clustering coefficients. In this paper we present a specific Triangle Generalized Preferential Attachment Model (TGPA) that, by construction, has nontrivial clustering. We further prove that this model has a power-law in both the degree distribution and eigenvalue spectra. We use this model to investigate a recent finding that power-laws are more reliably observed in the eigenvalue spectra of real-world networks than in their degree distribution. One conjectured explanation for this is that the spectra of the graph is more robust to various sampling strategies that would have been employed to collect the real-world data compared with the degree distribution. Consequently, we generate random TGPA models that provably have a power-law in both, and sample subgraphs via forest fire, depth-first, and random edge models. We find that the samples show a power-law in the spectra even when only 30% of the network is seen. Whereas there is a large chance that the degrees will not show a power-law. Our TGPA model shows this behavior much more clearly than a standard preferential attachment model. This provides one possible explanation for why power-laws may be seen frequently in the spectra of real world data.
We consider a general preferential attachment model, where the probability that a newly arriving vertex connects to an older vertex is proportional to a sublinear function of the indegree of the older vertex at that time. It is well known that the di stribution of a uniformly chosen vertex converges to a limiting distribution. Depending on the parameters, this model can show power law, but also stretched exponential behaviour. Using Steins method we provide rates of convergence for the total variation distance. Our proof uses the fact that the limiting distribution is the stationary distribution of a Markov chain together with the generator method of Barbour.
We consider the degree distributions of preferential attachment random graph models with choice similar to those considered in recent work by Malyshkin and Paquette and Krapivsky and Redner. In these models a new vertex chooses $r$ vertices according to a preferential rule and connects to the vertex in the selection with the $s$th highest degree. For meek choice, where $s>1$, we show that both double exponential decay of the degree distribution and condensation-like behaviour are possible, and provide a criterion to distinguish between them. For greedy choice, where $s=1$, we confirm that the degree distribution asympotically follows a power law with logarithmic correction when $r=2$ and shows condensation-like behaviour when $r>2$.
We present a simple model of network growth and solve it by writing down the dynamic equations for its macroscopic characteristics like the degree distribution and degree correlations. This allows us to study carefully the percolation transition usin g a generating functions theory. The model considers a network with a fixed number of nodes wherein links are introduced using degree-dependent linking probabilities $p_k$. To illustrate the techniques and support our findings using Monte-Carlo simulations, we introduce the exemplary linking rule $p_k$ proportional to $k^{-alpha}$, with $alpha$ between -1 and plus infinity. This parameter may be used to interpolate between different regimes. For negative $alpha$, links are most likely attached to high-degree nodes. On the other hand, in case $alpha>0$, nodes with low degrees are connected and the model asymptotically approaches a process undergoing explosive percolation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا