ﻻ يوجد ملخص باللغة العربية
The interaction between a qubit and its environment provides a channel for energy relaxation which has an energy-dependent timescale governed by the specific coupling mechanism. We measure the rate of inelastic decay in a Si MOS double quantum dot (DQD) charge qubit through sensing the charge states response to non-adiabatic driving of its excited state population. The charge distribution is sensed remotely in the weak measurement regime. We extract emission rates down to kHz frequencies by measuring the variation of the non-equilibrium charge occupancy as a function of amplitude and dwell times between non-adiabatic pulses. Our measurement of the energy-dependent relaxation rate provides a fingerprint of the relaxation mechanism, indicating that relaxation rates for this Si MOS DQD are consistent with coupling to deformation acoustic phonons.
Persistent control of a transmon qubit is performed by a feedback protocol based on continuous heterodyne measurement of its fluorescence. By driving the qubit and cavity with microwave signals whose amplitudes depend linearly on the instantaneous va
Quantum emitters are an integral component for a broad range of quantum technologies including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum o
We consider a one-dimensional chain of N equidistantly spaced noninteracting qubits embedded in an open waveguide. In the frame of single-excitation subspace, we systematically study the evolution of qubits amplitudes if the only qubit in the chain w
We study the evolution of qubits amplitudes in a one-dimensional chain consisting of three equidistantly spaced noninteracting qubits embedded in an open waveguide. The study is performed in the frame of single-excitation subspace, where the only qub
We present a detailed characterization of coherence in seven transmon qubits in a circuit QED architecture. We find that spontaneous emission rates are strongly influenced by far off-resonant modes of the cavity and can be understood within a semicla