ﻻ يوجد ملخص باللغة العربية
Correlations that violate a Bell Inequality are said to be nonlocal, i.e. they do not admit a local and deterministic explanation. Great effort has been devoted to study how the amount of nonlocality (as measured by a Bell inequality violation) serves to quantify the amount of randomness present in observed correlations. In this work we reverse this research program and ask what do the randomness certification capabilities of a theory tell us about the nonlocality of that theory. We find that, contrary to initial intuition, maximally nonlocal theories cannot allow maximal randomness certification. We go on and show that quantum theory, in contrast, permits certification of maximal randomness in all dichotomic scenarios. We hence pose the question of whether quantum theory is optimal for randomness, i.e. is it the most nonlocal theory that allows maximal randomness certification? We answer this question in the negative by identifying a larger-than-quantum set of correlations capable of this feat. Not only are these results relevant to understanding quantum mechanics fundamental features, but also put fundamental restrictions on device-independent protocols based on the no-signaling principle.
This paper considers a special class of nonlocal games $(G,psi)$, where $G$ is a two-player one-round game, and $psi$ is a bipartite state independent of $G$. In the game $(G,psi)$, the players are allowed to share arbitrarily many copies of $psi$. T
Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number of states $q=3,4$ in $d$ dimensions. We us
Integral invariants in maximally supersymmetric Yang-Mills theories are discussed in spacetime dimensions $4leq Dleq 10$ for $SU(k)$ gauge groups. It is shown that, in addition to the action, there are three special invariants in all dimensions. Two
Maximally Natural Supersymmetry, an unusual weak-scale supersymmetric extension of the Standard Model based upon the inherently higher-dimensional mechanism of Scherk-Schwarz supersymmetry breaking (SSSB), possesses remarkably good fine tuning given
By incorporating the asymmetry of local protocols, i.e., some party has to start with a nontrivial measurement, into an operational method of detecting the local indistinguishability proposed by Horodecki {it et al.} [Phys.Rev.Lett. 90 047902 (2003)]