ﻻ يوجد ملخص باللغة العربية
We report on small angle neutron scattering measurements of the vortex lattice in twin-free YBa2Cu3O7, extending the previously investigated maximum field of 11~T up to 16.7~T with the field applied parallel to the c axis. This is the first microscopic study of vortex matter in this region of the superconducting phase. We find the high field VL displays a rhombic structure, with a field-dependent coordination that passes through a square configuration, and which does not lock-in to a field-independent structure. The VL pinning reduces with increasing temperature, but is seen to affect the VL correlation length even above the irreversibility temperature of the lattice structure. At high field and temperature we observe a melting transition, which appears to be first order, with no detectable signal from a vortex liquid above the transition.
The vortex lattice (VL) in the high-kappa superconductor YBa2Cu3O7, at 2 K and with the magnetic field parallel to the crystal c-axis, undergoes a sequence of transitions between different structures as a function of applied magnetic field. However,
We report on small-angle neutron scattering studies of the intrinsic vortex lattice (VL) structure in detwinned YBa2Cu3O7 at 2 K, and in fields up to 10.8 T. Because of the suppressed pinning to twin-domain boundaries, a new distorted hexagonal VL st
We present an exhaustive analysis of transport measurements performed in twinned YBa2Cu3O7 single crystals which stablishes that the vortex solid-liquid transition is first order when the magnetic field H is applied at an angle theta away from the di
It is shown that the Dirac fermion structures created in the middle of the Landau bands in the vortex-lattice state of a pure 2D strongly type-II superconductor at half-integer filling factors can be effectively controlled by the external magnetic fi
Measurements of the $^{17}$O nuclear magnetic resonance (NMR) quadrupolar spectrum of apical oxygen in HgBa$_{2}$CuO$_{4+delta}$ were performed over a range of magnetic fields from 6.4 to 30,T in the superconducting state. Oxygen isotope exchanged si