ﻻ يوجد ملخص باللغة العربية
The vortex lattice (VL) in the high-kappa superconductor YBa2Cu3O7, at 2 K and with the magnetic field parallel to the crystal c-axis, undergoes a sequence of transitions between different structures as a function of applied magnetic field. However, from structural studies alone, it is not possible to determine precisely the system anisotropy that governs the transitions between different structures. To address this question, here we report new small-angle neutron scattering measurements of both the VL structure at higher temperatures, and the field- and temperature-dependence of the VL form factor. Our measurements demonstrate how the influence of anisotropy on the VL, which in theory can be parameterized as nonlocal corrections, becomes progressively important with increasing magnetic field, and suppressed by increasing the temperature towards Tc. The data indicate that nonlocality due to different anisotropies play important roles in determining the VL properties.
We report on small-angle neutron scattering studies of the intrinsic vortex lattice (VL) structure in detwinned YBa2Cu3O7 at 2 K, and in fields up to 10.8 T. Because of the suppressed pinning to twin-domain boundaries, a new distorted hexagonal VL st
We report on small angle neutron scattering measurements of the vortex lattice in twin-free YBa2Cu3O7, extending the previously investigated maximum field of 11~T up to 16.7~T with the field applied parallel to the c axis. This is the first microscop
The microscopic doping mechanism behind the superconductor-to-insulator transition of a thin film of YBa2Cu3O7 was recently identified as due to the migration of O atoms from the CuO chains of the film. Here we employ density-functional theory calcul
We report on marked memory effects in the vortex system of twinned YBa2Cu3O7 single crystals observed in ac susceptibility measurements. We show that the vortex system can be trapped in different metastable states with variable degree of order arisin
When very high magnetic fields suppress the superconductivity in underdoped cuprates, an exceptional new electronic phase appears. It supports remarkable and unexplained quantum oscillations and exhibits an unidentified density wave (DW) state. Altho