ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamic model of social influence on two-dimensional square lattice: Case for two features

110   0   0.0 ( 0 )
 نشر من قبل Andrej Gendiar
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a thermodynamic multi-state spin model in order to describe equilibrial behavior of a society. Our model is inspired by the Axelrod model used in social network studies. In the framework of the statistical mechanics language, we analyze phase transitions of our model, in which the spin interaction $J$ is interpreted as a mutual communication among individuals forming a society. The thermal fluctuations introduce a noise $T$ into the communication, which suppresses long-range correlations. Below a certain phase transition point $T_t$, large-scale clusters of the individuals, who share a specific dominant property, are formed. The measure of the cluster sizes is an order parameter after spontaneous symmetry breaking. By means of the Corner transfer matrix renormalization group algorithm, we treat our model in the thermodynamic limit and classify the phase transitions with respect to inherent degrees of freedom. Each individual is chosen to possess two independent features $f=2$ and each feature can assume one of $q$ traits (e.g. interests). Hence, each individual is described by $q^2$ degrees of freedom. A single first order phase transition is detected in our model if $q>2$, whereas two distinct continuous phase transitions are found if $q=2$ only. Evaluating the free energy, order parameters, specific heat, and the entanglement von Neumann entropy, we classify the phase transitions $T_t(q)$ in detail. The permanent existence of the ordered phase (the large-scale cluster formation with a non-zero order parameter) is conjectured below a non-zero transition point $T_t(q)approx0.5$ in the asymptotic regime $qtoinfty$.



قيم البحث

اقرأ أيضاً

315 - Y. Gandica , E. Medina , 2012
We propose a thermodynamic version of the Axelrod model of social influence. In one-dimensional (1D) lattices, the thermodynamic model becomes a coupled Potts model with a bonding interaction that increases with the site matching traits. We analytica lly calculate thermodynamic and critical properties for a 1D system and show that an order-disorder phase transition only occurs at T = 0 independent of the number of cultural traits q and features F. The 1D thermodynamic Axelrod model belongs to the same universality class of the Ising and Potts models, notwithstanding the increase of the internal dimension of the local degree of freedom and the state-dependent bonding interaction. We suggest a unifying proposal to compare exponents across different discrete 1D models. The comparison with our Hamiltonian description reveals that in the thermodynamic limit the original out-of-equilibrium 1D Axelrod model with noise behaves like an ordinary thermodynamic 1D interacting particle system.
145 - F. W. S. Lima 2013
We study a nonequilibrium model with up-down symmetry and a noise parameter $q$ known as majority-vote model of M.J. Oliveira 1992 with heterogeneous agents on square lattice. By Monte Carlo simulations and finite-size scaling relations the critical exponents $beta/ u$, $gamma/ u$, and $1/ u$ and points $q_{c}$ and $U^*$ are obtained. After extensive simulations, we obtain $beta/ u=0.35(1)$, $gamma/ u=1.23(8)$, and $1/ u=1.05(5)$. The calculated values of the critical noise parameter and Binder cumulant are $q_{c}=0.1589(4)$ and $U^*=0.604(7)$. Within the error bars, the exponents obey the relation $2beta/ u+gamma/ u=2$ and the results presented here demonstrate that the majority-vote model heterogeneous agents belongs to a different universality class than the nonequilibrium majority-vote models with homogeneous agents on square lattice.
365 - H. Ikeda , S. Shinkai , 2008
We investigate the Hubbard model on a two-dimensional square lattice by the perturbation expansion to the fourth order in the on-site Coulomb repulsion U. Numerically calculating all diagrams up to the fourth order in self-energy, we examine the conv ergence of perturbation series in the lattice system. We indicate that the coefficient of each order term rapidly decreases as in the impurity Anderson model for T > 0.1t in the half-filled case, but it holds in the doped case even at lower temperatures. Thus, we can expect that the convergence of perturbation expansion in U is very good in a wide parameter region also in the lattice system, except for T < 0.1t in the half-filled case. We next calculate the density of states in the fourth-order perturbation. In the half-filled case, the shape in a moderate correlation regime is quite different from the three peak structure in the second-order perturbation. Remarkable upper and lower Hubbard bands locate at w = +(-)U/2, and a pseudogap appears at the Fermi level w=0. This is considered as the precursor of the Mott-Hubbard antiferromagnetic structure. In the doped case, quasiparticles with very heavy mass are formed at the Fermi level. Thus, we conclude that the fourth-order perturbation theory overall well explain the asymptotic behaviors in a strong correlation regime.
We show how the prevailing majority opinion in a population can be rapidly reversed by a small fraction p of randomly distributed committed agents who consistently proselytize the opposing opinion and are immune to influence. Specifically, we show th at when the committed fraction grows beyond a critical value p_c approx 10%, there is a dramatic decrease in the time, T_c, taken for the entire population to adopt the committed opinion. In particular, for complete graphs we show that when p < p_c, T_c sim exp(alpha(p)N), while for p > p_c, T_c sim ln N. We conclude with simulation results for ErdH{o}s-Renyi random graphs and scale-free networks which show qualitatively similar behavior.
In this paper we present an improved lattice Boltzmann model for compressible Navier-Stokes system with high Mach number. The model is composed of three components: (i) the discrete-velocity-model by Watari and Tsutahara [Phys Rev E textbf{67},036306 (2003)], (ii) a modified Lax-Wendroff finite difference scheme where reasonable dissipation and dispersion are naturally included, (iii) artificial viscosity. The improved model is convenient to compromise the high accuracy and stability. The included dispersion term can effectively reduce the numerical oscillation at discontinuity. The added artificial viscosity helps the scheme to satisfy the von Neumann stability condition. Shock tubes and shock reflections are used to validate the new scheme. In our numerical tests the Mach numbers are successfully increased up to 20 or higher. The flexibility of the new model makes it suitable for tracking shock waves with high accuracy and for investigating nonlinear nonequilibrium complex systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا