ترغب بنشر مسار تعليمي؟ اضغط هنا

Scanning electron microscopy of Rydberg-excited Bose-Einstein condensates

224   0   0.0 ( 0 )
 نشر من قبل Giovanni Barontini
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the realization of high resolution electron microscopy of Rydberg-excited ultracold atomic samples. The implementation of an ultraviolet laser system allows us to excite the atom, with a single-photon transition, to Rydberg states. By using the electron microscopy technique during the Rydberg excitation of the atoms, we observe a giant enhancement in the production of ions. This is due to $l$-changing collisions, which broaden the Rydberg level and therefore increase the excitation rate of Rydberg atoms. Our results pave the way for the high resolution spatial detection of Rydberg atoms in an atomic sample.



قيم البحث

اقرأ أيضاً

We propose a technique for engineering momentum-dependent dissipation in Bose-Einstein condensates with non-local interactions. The scheme relies on the use of momentum-dependent dark-states in close analogy to velocity-selective coherent population trapping. During the short-time dissipative dynamics, the system is driven into a particular finite-momentum phonon mode, which in real space corresponds to an ordered structure with non-local density-density correlations. Dissipation-induced ordering can be observed and studied in present-day experiments using cold atoms with dipole-dipole or off-resonant Rydberg interactions. Due to its dissipative nature, the ordering does not require artificial breaking of translational symmetry by an opticallattice or harmonic trap. This opens up a perspective of direct cooling of quantum gases into strongly-interacting phases.
Extending the understanding of Bose-Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the s urface of an ellipsoidal shell. Study of this geometry would give insight into new collective modes, self-interference effects, topology-dependent vortex behavior, dimensionality crossovers from thick to thin shells, and the properties of condensates pushed into the ultradilute limit. Here we discuss a proposal to implement a realistic experimental framework for generating shell-geometry BEC using radiofrequency dressing of magnetically-trapped samples. Such a tantalizing state of matter is inaccessible terrestrially due to the distorting effect of gravity on experimentally-feasible shell potentials. The debut of an orbital BEC machine (NASA Cold Atom Laboratory, aboard the International Space Station) has enabled the operation of quantum-gas experiments in a regime of perpetual freefall, and thus has permitted the planning of microgravity shell-geometry BEC experiments. We discuss specific experimental configurations, applicable inhomogeneities and other experimental challenges, and outline potential experiments.
Excited-state quantum phase transitions (ESQPTs) extend the notion of quantum phase transitions beyond the ground state. They are characterized by closing energy gaps amid the spectrum. Identifying order parameters for ESQPTs poses however a major ch allenge. We introduce spinor Bose-Einstein condensates as a versatile platform for studies of ESQPTs. Based on the mean-field dynamics, we define a topological order parameter that distinguishes between excited-state phases, and discuss how to interferometrically access the order parameter in current experiments. Our work opens the way for the experimental characterization of excited-state quantum phases in atomic many-body systems.
We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing anisotropy of the trapping potential. Once the rotational symmetry is broken, we find that the vortex system undergoes a rich var iety of structural changes, including the formation of zig-zag and linear configurations. These spatial re-arrangements are well signaled by the change in the behavior of the vortex-pattern eigenmodes against the anisotropy parameter. The existence of such structural changes opens up possibilities for the coherent exploitation of effective many-body systems based on vortex patterns.
We explore the time evolution of quasi-1D two component Bose-Einstein condensates (BECs) following a quench from one component BECs with a ${rm U}(1)$ order parameter into two component condensates with a ${rm U}(1)shorttimes{rm Z}_2$ order parameter . In our case, these two spin components have a propensity to phase separate, i.e., they are immiscible. Remarkably, these spin degrees of freedom can equivalently be described as a single component attractive BEC. A spatially uniform mixture of these spins is dynamically unstable, rapidly amplifing any quantum or pre-existing classical spin fluctuations. This coherent growth process drives the formation of numerous spin polarized domains, which are far from the systems ground state. At much longer times these domains grow in size, coarsening, as the system approaches equilibrium. The experimentally observed time evolution is fully consistent with our stochastic-projected Gross-Pitaevskii calculation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا