ﻻ يوجد ملخص باللغة العربية
We have identified ionized outflows in the narrow line region of all but one SDSS type 2 quasars (QSO2) at z<~0.1 (20/21, detection rate 95%), implying that this is a ubiquitous phenomenon in this object class also at the lowest z. The outflowing gas has high densities (n_e>1000 cm-3) and covers a region the size of a few kpc. This implies ionized outflow masses M~(0.3-2.4)x1e6 Msun and mass outflow rates M(dot)<few Msun yr-1. The triggering mechanism of the outflows is related to the nuclear activity. The QSO2 can be classified in two groups according to the behavior and properties of the outflowing gas. QSO2 in Group 1 (5/20 objects) show the most extreme turbulence, they have on average higher radio luminosities and higher excess of radio emission. QSO2 in Group 2 (15/20 objects) show less extreme turbulence, they have lower radio luminosities and, on average, lower or no radio excess. We propose that two competing outflow mechanisms are at work: radio jets and accretion disk winds. Radio jet induced outflows are dominant in Group 1, while disk winds dominate in Group 2. We find that the radio jet mode is capable of producing more extreme outflows. To test this interpretation we predict that: 1) high resolution VLBA imaging will reveal the presence of jets in Group 1 QSO2; 2) the morphology of their extended ionized nebulae must be more highly collimated and kinematically perturbed.
We present VLT/XSHOOTER rest-frame UV-optical spectra of 10 Hot Dust-Obscured Galaxies (Hot DOGs) at $zsim2$ to investigate AGN diagnostics and to assess the presence and effect of ionized gas outflows. Most Hot DOGs in this sample are narrow-line do
We present an analysis of the kinematics and excitation of the warm ionized gas in two obscured, powerful quasars at z>=3.5 from the SWIRE survey, SWIRE J022513.90-043419.9 and SWIRE J022550.67-042142, based on imaging spectroscopy on the VLT. Line r
We have investigated a sample of 5088 quasars from the Sloan Digital Sky Survey Second Data Release in order to determine how the frequency and properties of broad absorptions lines (BALs) depend on black hole mass, bolometric luminosity, Eddington f
We study the physical and kinematic properties of the narrow line region (NLR) of the nearest obscured quasar MRK 477 (z=0.037), using optical and near-infrared spectroscopy. We explore a diversity of aspects that provide a more complete understandin
Clustering measurements of obscured and unobscured quasars show that obscured quasars reside in more massive dark matter halos than their unobscured counterparts. These results are inconsistent with simple unified (torus) scenarios, but might be expl