ترغب بنشر مسار تعليمي؟ اضغط هنا

An X-Ray Line from eXciting Dark Matter

134   0   0.0 ( 0 )
 نشر من قبل Neal Weiner
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The eXciting Dark Matter (XDM) model was proposed as a mechanism to efficiently convert the kinetic energy (in sufficiently hot environments) of dark matter into e+e- pairs. The standard scenario invokes a doublet of nearly degenerate DM states, and a dark force to mediate a large upscattering cross section between the two. For heavy ($sim TeV$) DM, the kinetic energy of WIMPs in large (galaxy-sized or larger) halos is capable of producing low-energy positrons. For lighter dark matter, this is kinematically impossible, and the unique observable signature becomes an X-ray line, arising from $chi chi rightarrow chi^* chi^*$, followed by $chi^* rightarrow chi gamma$. This variant of XDM is distinctive from other DM X-ray scenarios in that it tends to be most present in more massive, hotter environments, such as clusters, rather than nearby dwarfs, and has different dependencies from decaying models. We find that it is capable of explaining the recently reported X-ray line at 3.56 keV. For very long lifetimes of the excited state, primordial decays can explain the signal without the presence of upscattering. Thermal models freeze-out as in the normal XDM setup, via annihilations to the light boson $phi$. For suitable masses the annihilation $chi chi rightarrow phi phi$ followed by $phi rightarrow SM$ can explain the reported gamma-ray signature from the galactic center. Direct detection is discussed, including the possibility of explaining DAMA via the Luminous dark matter approach. Quite generally, the proximity of the 3.56 keV line to the energy scale of DAMA motivates a reexamination of electromagnetic explanations. Other signals, including lepton jets and the modification of cores of dwarf galaxies are also considered.



قيم البحث

اقرأ أيضاً

204 - Ki-Young Choi , Osamu Seto 2014
We consider axino warm dark matter in a supersymmetric axion model with R-parity violation. In this scenario, axino with the mass $m_axinosimeq 7$ keV can decay into photon and neutrino resulting in the X-ray line signal at $3.5$ keV, which might be the origin of unidentified X-ray emissions from galaxy clusters and Andromeda galaxy detected by the XMM-Newton X-ray observatory.
In this work we show that the excess of antiprotons in the range $E_{K}=10-20 ~GeV$ reported by several groups in the analysis of the AMS-02 Collaboration data, can be explained by the production of antiprotons in the annihilation of dark matter with a $(1,0)oplus (0,1)$ space-time structure (tensor dark matter). First, we calculate the proton and antiproton flux from conventional mechanisms and fit our results to the AMS-02 data, confirming the antiproton excess. Then we calculate the antiproton production in the annihilation of tensor dark matter. For the window $Min [62.470,62.505] ~ GeV$ to which the measured relic density, XENO1T results and the gamma ray excess from the galactic center constrain the values of the tensor dark matter mass, we find sizable contributions of antiprotons in the excess region from the annihilation into $bar{b}b$ and smaller contributions from the $bar{c}c$ channel. We fit our results to the AMS-02 data, finding an improvement of the fit for these values of $M$.
Recently reported tentative evidence for a gamma-ray line in the Fermi-LAT data is of great potential interest for identifying the nature of dark matter. We compare the implications for decaying and annihilating dark matter taking the constraints fro m continuum gamma-rays, antiproton flux and morphology of the excess into account. We find that higgsino and wino dark matter are excluded, also for nonthermal production. Generically, the continuum gamma-ray flux severely constrains annihilating dark matter. Consistency of decaying dark matter with the spatial distribution of the Fermi-LAT excess would require an enhancement of the dark matter density near the Galactic center.
We study an exciting dark matter scenario in a radiative neutrino model to explain the X-ray line signal at $3.55$ keV recently reported by XMN-Newton X-ray observatory using data of various galaxy clusters and Andromeda galaxy. We show that the requ ired large cross section for the up-scattering process to explain the X-ray line can be obtained via the resonance of the pseudo-scalar. Moreover this model can be compatible with the thermal production of dark matter and the constraint from the direct detection experiment.
138 - L. A. Dal , A. R. Raklev 2015
Antideuterons are a potential messenger for dark matter annihilation or decay in our own galaxy, with very low backgrounds expected from astrophysical processes. The standard coalescence model of antideuteron formation, while simple to implement, is shown to be under considerable strain by recent data from the LHC. We suggest a new empirically based model, with only one free parameter, which is better able to cope with these data, and we explore the consequences of the model for dark matter searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا