ﻻ يوجد ملخص باللغة العربية
In this work we show that the excess of antiprotons in the range $E_{K}=10-20 ~GeV$ reported by several groups in the analysis of the AMS-02 Collaboration data, can be explained by the production of antiprotons in the annihilation of dark matter with a $(1,0)oplus (0,1)$ space-time structure (tensor dark matter). First, we calculate the proton and antiproton flux from conventional mechanisms and fit our results to the AMS-02 data, confirming the antiproton excess. Then we calculate the antiproton production in the annihilation of tensor dark matter. For the window $Min [62.470,62.505] ~ GeV$ to which the measured relic density, XENO1T results and the gamma ray excess from the galactic center constrain the values of the tensor dark matter mass, we find sizable contributions of antiprotons in the excess region from the annihilation into $bar{b}b$ and smaller contributions from the $bar{c}c$ channel. We fit our results to the AMS-02 data, finding an improvement of the fit for these values of $M$.
The CoGeNT experiment, dedicated to direct detection of dark matter, has recently released excess events that could be interpreted as elastic collisions of $sim$10 GeV dark matter particles, which might simultaneously explain the still mysterious DAM
We consider a simple extension of the type-II two-Higgs-doublet model by introducing a real scalar as a candidate for dark matter in the present Universe. The main annihilation mode of the dark matter particle with a mass of around $31-40$ GeV is int
Light non-relativistic components of the galactic dark matter halo elude direct detection constraints because they lack the kinetic energy to create an observable recoil. However, cosmic-rays can upscatter dark matter to significant energies, giving
We propose a model of dark matter identified with a pseudo-Nambu-Goldstone boson in the dynamical supersymmetry breaking sector in a gauge mediation scenario. The dark matter particles annihilate via a below-threshold narrow resonance into a pair of
Recently reported tentative evidence for a gamma-ray line in the Fermi-LAT data is of great potential interest for identifying the nature of dark matter. We compare the implications for decaying and annihilating dark matter taking the constraints fro