ﻻ يوجد ملخص باللغة العربية
Prospect theory is widely viewed as the best available descriptive model of how people evaluate risk in experimental settings. According to prospect theory, people are risk-averse with respect to gains and risk-seeking with respect to losses, a phenomenon called loss aversion. Despite of the fact that prospect theory has been well developed in behavioral economics at the theoretical level, there exist very few large-scale empirical studies and most of them have been undertaken with micro-panel data. Here we analyze over 28.5 million trades made by 81.3 thousand traders of an online financial trading community over 28 months, aiming to explore the large-scale empirical aspect of prospect theory. By analyzing and comparing the behavior of winning and losing trades and traders, we find clear evidence of the loss aversion phenomenon, an essence in prospect theory. This work hence demonstrates an unprecedented large-scale empirical evidence of prospect theory, which has immediate implication in financial trading, e.g., developing new trading strategies by minimizing the effect of loss aversion. Moreover, we introduce three risk-adjusted metrics inspired by prospect theory to differentiate winning and losing traders based on their historical trading behavior. This offers us potential opportunities to augment online social trading, where traders are allowed to watch and follow the trading activities of others, by predicting potential winners statistically based on their historical trading behavior rather than their trading performance at any given point in time.
A dynamic herding model with interactions of trading volumes is introduced. At time $t$, an agent trades with a probability, which depends on the ratio of the total trading volume at time $t-1$ to its own trading volume at its last trade. The price r
Financial trading aims to build profitable strategies to make wise investment decisions in the financial market. It has attracted interests in the machine learning community for a long time. This paper proposes to trade financial assets automatically
Online trading has attracted millions of people around the world. In March 2021, it was reported there were 18 million accounts from just one broker. Historically, manipulation in financial markets is considered to be fraudulently influencing share,
We study the daily trading volume volatility of 17,197 stocks in the U.S. stock markets during the period 1989--2008 and analyze the time return intervals $tau$ between volume volatilities above a given threshold q. For different thresholds q, the pr
In this paper we examine inefficiencies and information disparity in the Japanese stock market. By carefully analysing information publicly available on the internet, an `outsider to conventional statistical arbitrage strategies--which are based on m