ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling interaction of trading volume in financial dynamics

448   0   0.0 ( 0 )
 نشر من قبل Fei Ren
 تاريخ النشر 2009
  مجال البحث مالية فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A dynamic herding model with interactions of trading volumes is introduced. At time $t$, an agent trades with a probability, which depends on the ratio of the total trading volume at time $t-1$ to its own trading volume at its last trade. The price return is determined by the volume imbalance and number of trades. The model successfully reproduces the power-law distributions of the trading volume, number of trades and price return, and their relations. Moreover, the generated time series are long-range correlated. We demonstrate that the results are rather robust, and do not depend on the particular form of the trading probability.



قيم البحث

اقرأ أيضاً

We study the daily trading volume volatility of 17,197 stocks in the U.S. stock markets during the period 1989--2008 and analyze the time return intervals $tau$ between volume volatilities above a given threshold q. For different thresholds q, the pr obability density function P_q(tau) scales with mean interval <tau> as P_q(tau)=<tau>^{-1}f(tau/<tau>) and the tails of the scaling function can be well approximated by a power-law f(x)~x^{-gamma}. We also study the relation between the form of the distribution function P_q(tau) and several financial factors: stock lifetime, market capitalization, volume, and trading value. We find a systematic tendency of P_q(tau) associated with these factors, suggesting a multi-scaling feature in the volume return intervals. We analyze the conditional probability P_q(tau|tau_0) for $tau$ following a certain interval tau_0, and find that P_q(tau|tau_0) depends on tau_0 such that immediately following a short/long return interval a second short/long return interval tends to occur. We also find indications that there is a long-term correlation in the daily volume volatility. We compare our results to those found earlier for price volatility.
The model describing market dynamics after a large financial crash is considered in terms of the stochastic differential equation of Ito. Physically, the model presents an overdamped Brownian particle moving in the nonstationary one-dimensional poten tial $U$ under the influence of the variable noise intensity, depending on the particle position $x$. Based on the empirical data the approximate estimation of the Kramers-Moyal coefficients $D_{1,2}$ allow to predicate quite definitely the behavior of the potential introduced by $D_1 = - partial U /partial x$ and the volatility $sim sqrt{D_2}$. It has been shown that the presented model describes well enough the best known empirical facts relative to the large financial crash of October 1987.
Prospect theory is widely viewed as the best available descriptive model of how people evaluate risk in experimental settings. According to prospect theory, people are risk-averse with respect to gains and risk-seeking with respect to losses, a pheno menon called loss aversion. Despite of the fact that prospect theory has been well developed in behavioral economics at the theoretical level, there exist very few large-scale empirical studies and most of them have been undertaken with micro-panel data. Here we analyze over 28.5 million trades made by 81.3 thousand traders of an online financial trading community over 28 months, aiming to explore the large-scale empirical aspect of prospect theory. By analyzing and comparing the behavior of winning and losing trades and traders, we find clear evidence of the loss aversion phenomenon, an essence in prospect theory. This work hence demonstrates an unprecedented large-scale empirical evidence of prospect theory, which has immediate implication in financial trading, e.g., developing new trading strategies by minimizing the effect of loss aversion. Moreover, we introduce three risk-adjusted metrics inspired by prospect theory to differentiate winning and losing traders based on their historical trading behavior. This offers us potential opportunities to augment online social trading, where traders are allowed to watch and follow the trading activities of others, by predicting potential winners statistically based on their historical trading behavior rather than their trading performance at any given point in time.
Possible distributions are discussed for intertrade durations and first-passage processes in financial markets. The view-point of renewal theory is assumed. In order to represent market data with relatively long durations, two types of distributions are used, namely, a distribution derived from the so-called Mittag-Leffler survival function and the Weibull distribution. For Mittag-Leffler type distribution, the average waiting time (residual life time) is strongly dependent on the choice of a cut-off parameter t_ max, whereas the results based on the Weibull distribution do not depend on such a cut-off. Therefore, a Weibull distribution is more convenient than a Mittag-Leffler type one if one wishes to evaluate relevant statistics such as average waiting time in financial markets with long durations. On the other side, we find that the Gini index is rather independent of the cut-off parameter. Based on the above considerations, we propose a good candidate for describing the distribution of first-passage time in a market: The Weibull distribution with a power-law tail. This distribution compensates the gap between theoretical and empirical results much more efficiently than a simple Weibull distribution. We also give a useful formula to determine an optimal crossover point minimizing the difference between the empirical average waiting time and the one predicted from renewal theory. Moreover, we discuss the limitation of our distributions by applying our distribution to the analysis of the BTP future and calculating the average waiting time. We find that our distribution is applicable as long as durations follow a Weibull-law for short times and do not have too heavy a tail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا