ترغب بنشر مسار تعليمي؟ اضغط هنا

Positive fragments of coalgebraic logics

419   0   0.0 ( 0 )
 نشر من قبل Alexander Kurz
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Positive modal logic was introduced in an influential 1995 paper of Dunn as the positive fragment of standard modal logic. His completeness result consists of an axiomatization that derives all modal formulas that are valid on all Kripke frames and are built only from atomic propositions, conjunction, disjunction, box and diamond. In this paper, we provide a coalgebraic analysis of this theorem, which not only gives a conceptual proof based on duality theory, but also generalizes Dunns result from Kripke frames to coalgebras for weak-pullback preserving functors. To facilitate this analysis we prove a number of category theoretic results on functors on the categories $mathsf{Set}$ of sets and $mathsf{Pos}$ of posets: Every functor $mathsf{Set} to mathsf{Pos}$ has a $mathsf{Pos}$-enriched left Kan extension $mathsf{Pos} to mathsf{Pos}$. Functors arising in this way are said to have a presentation in discrete arities. In the case that $mathsf{Set} to mathsf{Pos}$ is actually $mathsf{Set}$-valued, we call the corresponding left Kan extension $mathsf{Pos} to mathsf{Pos}$ its posetification. A $mathsf{Set}$-functor preserves weak pullbacks if and only if its posetification preserves exact squares. A $mathsf{Pos}$-functor with a presentation in discrete arities preserves surjections. The inclusion $mathsf{Set} to mathsf{Pos}$ is dense. A functor $mathsf{Pos} to mathsf{Pos}$ has a presentation in discrete arities if and only if it preserves coinserters of `truncated nerves of posets. A functor $mathsf{Pos} to mathsf{Pos}$ is a posetification if and only if it preserves coinserters of truncated nerves of posets and discrete posets. A locally monotone endofunctor of an ordered variety has a presentation by monotone operations and equations if and only if it preserves $mathsf{Pos}$-enriched sifted colimits.



قيم البحث

اقرأ أيضاً

501 - George Metcalfe 2011
Analytic proof calculi are introduced for box and diamond fragments of basic modal fuzzy logics that combine the Kripke semantics of modal logic K with the many-valued semantics of Godel logic. The calculi are used to establish completeness and complexity results for these fragments.
108 - Manfred Droste 2017
We introduce MK-fuzzy automata over a bimonoid K which is related to the fuzzification of the McCarthy-Kleene logic. Our automata are inspired by, and intend to contribute to, practical applications being in development in a project on runtime networ k monitoring based on predicate logic. We investigate closure properties of the class of recognizable MK-fuzzy languages accepted by MK-fuzzy automata as well as of deterministically recognizable MK-fuzzy languages accepted by their deterministic counterparts. Moreover, we establish a Nivat-like result for recognizable MK-fuzzy languages. We introduce an MK-fuzzy MSO logic and show the expressive equivalence of a fragment of this logic with MK-fuzzy automata, i.e., a Buchi type theorem.
61 - Marek Zawadowski 2020
We show that the (positive) zoom complexes, here called tree complexes, with fairly natural morphisms, form a dual category to the category of positive opetopes with contraction epimorphisms. We also show how this duality can be slightly generalized to thicket complexes and opetopic cardinals.
Restriction categories were introduced to provide an axiomatic setting for the study of partially defined mappings; they are categories equipped with an operation called restriction which assigns to every morphism an endomorphism of its domain, to be thought of as the partial identity that is defined to just the same degree as the original map. In this paper, we show that restriction categories can be identified with emph{enriched categories} in the sense of Kelly for a suitable enrichment base. By varying that base appropriately, we are also able to capture the notions of join and range restriction category in terms of enriched category theory.
68 - Paolo Perrone 2019
These notes were originally developed as lecture notes for a category theory course. They should be well-suited to anyone that wants to learn category theory from scratch and has a scientific mind. There is no need to know advanced mathematics, nor a ny of the disciplines where category theory is traditionally applied, such as algebraic geometry or theoretical computer science. The only knowledge that is assumed from the reader is linear algebra. All concepts are explained by giving concrete examples from different, non-specialized areas of mathematics (such as basic group theory, graph theory, and probability). Not every example is helpful for every reader, but hopefully every reader can find at least one helpful example per concept. The reader is encouraged to read all the examples, this way they may even learn something new about a different field. Particular emphasis is given to the Yoneda lemma and its significance, with both intuitive explanations, detailed proofs, and specific examples. Another common theme in these notes is the relationship between categories and directed multigraphs, which is treated in detail. From the applied point of view, this shows why categorical thinking can help whenever some process is taking place on a graph. From the pure math point of view, this can be seen as the 1-dimensional first step into the theory of simplicial sets. Finally, monads and comonads are treated on an equal footing, differently to most literature in which comonads are often overlooked as just the dual to monads. Theorems, interpretations and concrete examples are given for monads as well as for comonads.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا