ترغب بنشر مسار تعليمي؟ اضغط هنا

On Asymptotic Incoherence and its Implications for Compressed Sensing of Inverse Problems

127   0   0.0 ( 0 )
 نشر من قبل Alexander Jones
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, it has been shown that incoherence is an unrealistic assumption for compressed sensing when applied to many inverse problems. Instead, the key property that permits efficient recovery in such problems is so-called local incoherence. Similarly, the standard notion of sparsity is also inadequate for many real world problems. In particular, in many applications, the optimal sampling strategy depends on asymptotic incoherence and the signal sparsity structure. The purpose of this paper is to study asymptotic incoherence and its implications towards the design of optimal sampling strategies and efficient sparsity bases. It is determined how fast asymptotic incoherence can decay in general for isometries. Furthermore it is shown that Fourier sampling and wavelet sparsity, whilst globally coherent, yield optimal asymptotic incoherence as a power law up to a constant factor. Sharp bounds on the asymptotic incoherence for Fourier sampling with polynomial bases are also provided. A numerical experiment is also presented to demonstrate the role of asymptotic incoherence in finding good subsampling strategies.

قيم البحث

اقرأ أيضاً

In this work, we analyze the failing sets of the interval-passing algorithm (IPA) for compressed sensing. The IPA is an efficient iterative algorithm for reconstructing a k-sparse nonnegative n-dimensional real signal x from a small number of linear measurements y. In particular, we show that the IPA fails to recover x from y if and only if it fails to recover a corresponding binary vector of the same support, and also that only positions of nonzero values in the measurement matrix are of importance for success of recovery. Based on this observation, we introduce termatiko sets and show that the IPA fails to fully recover x if and only if the support of x contains a nonempty termatiko set, thus giving a complete (graph-theoretic) description of the failing sets of the IPA. Finally, we present an extensive numerical study showing that in many cases there exist termatiko sets of size strictly smaller than the stopping distance of the binary measurement matrix; even as low as half the stopping distance in some cases.
Evaluating the statistical dimension is a common tool to determine the asymptotic phase transition in compressed sensing problems with Gaussian ensemble. Unfortunately, the exact evaluation of the statistical dimension is very difficult and it has be come standard to replace it with an upper-bound. To ensure that this technique is suitable, [1] has introduced an upper-bound on the gap between the statistical dimension and its approximation. In this work, we first show that the error bound in [1] in some low-dimensional models such as total variation and $ell_1$ analysis minimization becomes poorly large. Next, we develop a new error bound which significantly improves the estimation gap compared to [1]. In particular, unlike the bound in [1] that is not applicable to settings with overcomplete dictionaries, our bound exhibits a decaying behavior in such cases.
Compressed sensing (CS) exploits the sparsity of a signal in order to integrate acquisition and compression. CS theory enables exact reconstruction of a sparse signal from relatively few linear measurements via a suitable nonlinear minimization proce ss. Conventional CS theory relies on vectorial data representation, which results in good compression ratios at the expense of increased computational complexity. In applications involving color images, video sequences, and multi-sensor networks, the data is intrinsically of high-order, and thus more suitably represented in tensorial form. Standard applications of CS to higher-order data typically involve representation of the data as long vectors that are in turn measured using large sampling matrices, thus imposing a huge computational and memory burden. In this chapter, we introduce Generalized Tensor Compressed Sensing (GTCS)--a unified framework for compressed sensing of higher-order tensors which preserves the intrinsic structure of tensorial data with reduced computational complexity at reconstruction. We demonstrate that GTCS offers an efficient means for representation of multidimensional data by providing simultaneous acquisition and compression from all tensor modes. In addition, we propound two reconstruction procedures, a serial method (GTCS-S) and a parallelizable method (GTCS-P), both capable of recovering a tensor based on noiseless and noisy observations. We then compare the performance of the proposed methods with Kronecker compressed sensing (KCS) and multi-way compressed sensing (MWCS). We demonstrate experimentally that GTCS outperforms KCS and MWCS in terms of both reconstruction accuracy (within a range of compression ratios) and processing speed. The major disadvantage of our methods (and of MWCS as well), is that the achieved compression ratios may be worse than those offered by KCS.
A sampling theorem on the sphere has been developed recently, requiring half as many samples as alternative equiangular sampling theorems on the sphere. A reduction by a factor of two in the number of samples required to represent a band-limited sign al on the sphere exactly has important implications for compressed sensing, both in terms of the dimensionality and sparsity of signals. We illustrate the impact of this property with an inpainting problem on the sphere, where we show the superior reconstruction performance when adopting the new sampling theorem compared to the alternative.
Compressed sensing (CS) or sparse signal reconstruction (SSR) is a signal processing technique that exploits the fact that acquired data can have a sparse representation in some basis. One popular technique to reconstruct or approximate the unknown s parse signal is the iterative hard thresholding (IHT) which however performs very poorly under non-Gaussian noise conditions or in the face of outliers (gross errors). In this paper, we propose a robust IHT method based on ideas from $M$-estimation that estimates the sparse signal and the scale of the error distribution simultaneously. The method has a negligible performance loss compared to IHT under Gaussian noise, but superior performance under heavy-tailed non-Gaussian noise conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا